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Abstract 
The use of computer programs to estimate the changes in velocity (Delta-V) suffered by a 
vehicle in a collision by estimating the amount of crush energy absorbed have been in use 
since the late 1970’s  These programs require a database of stiffness coefficients which 
define force per unit of crush on the damaged vehicle.   This paper explains the basic 
method used to establish such coefficients from test collisions performed from known 
speeds. 
 
 
Background  
The use of personal computers running a CRASH3 derivative program, such as 
EDCRASH or Ai Damage is now commonplace within the UK collision investigation 
fraternity.  Documentation is available which describes the algorithms used and how they 
relate to practical situations.  
 
The basic concept behind the CRASH3 programs is to compare the effect of test collisions 
with the crush produced in a real collision to determine the change in velocity which each 
vehicle suffers as a result.  Obviously it is impractical to crash all known vehicles at all 
possible speeds and impact configurations to build up a simple comparative database of 
photographs.  Instead the approach that has been adopted is to crash a number of 
vehicles at known speeds and use maths to determine other speeds and impact 
configurations. The basic equation used to determine the change in velocity, or Delta-V 

(v) for a vehicle as a result of the energy absorbed in crushing both the vehicles is given 
by the equation, 
 

)1(

)(2

2

1
1

21
1

m

m
m

EE
v




  (A) 

 
A similar equation exists for vehicle two.  Strictly speaking this equation only relates to 
collinear impacts where the force acting between the vehicles acts along the line joining 
the two centres of mass.  In production programs, the equations used also contain terms 
which allow for non-collinear or non-central collisions as they are often termed.  Non-
central impacts produce rotation as well as a change in velocity. 
 
Of interest is the reduction of equation (A) when one of the vehicles involved is very 
massive and absorbs no energy itself.  Such a situation often exists in practice where a 
vehicle collides with a barrier.  If m2 is set to a very large number and E2 set to zero 
equation (A) reduces to, 
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This is no more than a transposition of the well known kinetic energy equation (E = ½ 

mv2).  In these circumstances v1 is known as the equivalent barrier speed (EBS)  In other 

m1 and m2 represent the masses of each vehicle 
E1 and E2 represent the crush energy 



words the initial speed at which all the kinetic energy is converted into crush energy.  
Although of more historical interest, this demonstrates that if the energy of collision can be 
estimated for an immovable barrier impact, then the initial speed of the vehicle involved 
can be determined. 
 
In the CRASH3 derivative programs rather more can be achieved than just calculating the 
EBS for vehicles.  Equation (A) shows that the change in velocity of a vehicle can be 
calculated, regardless of its actual speed provided that an estimate of the energy absorbed 
can be made.  This is a vital point, as a perceived shortcoming of equation (A), is that only 
the change in velocity can be calculated.  The actual speed of the vehicle is 
indeterminable given just this information.    
 
Before any of these equations can be used, a reliable method of determining the amount 
of energy absorbed in crushing the vehicle must be established.  A value for the energy 
absorbed in the collision by each vehicle can be calculated from the expression, 
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The derivation of all these equations, including the more complete versions is explained 
elsewhere1.  What this paper seeks to address is the basic process by which the A and B 
coefficients are determined and why those particular coefficients are regarded more useful 
than perhaps a more obvious solution.   
 
Crash testing 
In its most primitive form, crash testing consists of propelling a vehicle head-on at a known 
speed into a solid barrier and measuring the residual crush as shown in Figure One.  In 
practice there are a wide variety of impact configurations which are used.   
 
Speeds at impact tend to be in the range 25 to 40 mph (40 – 65 kmh-1) because 
statistically this is the speed band at which most injury accidents occur.  In some tests, the 
impact is into another vehicle or perhaps a deformable barrier, such as with the NCAP 
testing at TRL.  For simplicity, the approach adopted here is initially similar to that used by 
Jean2 which only deals with a head-on impact into a solid immovable barrier. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A and B are coefficients specified in the program 
G = A

2
 / 2B 

C represents the crush depth  
L = width of crush 

 = force angle from perpendicular 
  

Damage width L 

Series of crush 
measurements taken 
across face of damaged 
vehicle.  
Usually labelled C1 – C6 

Original 
body line of 
vehicle. 
 

Figure One. 
Residual crush after a head-on 
barrier test 



Since the collision is head-on, a fairly uniform crush profile should be expected.  The US 
National Highway Traffic Safety Administration (NHTSA) make available all their crash test 
results.  These are available through the WWW and also through the Accident 
Reconstruction Journal which publishes the results on a fairly regular basis.  To produce 
more realistic examples, a sample test will be used.  The results are published in miles per 
hour, weight in pounds and crush in inches so these been converted into metric units for 
this paper.  The March / April 1995 edition of ARJ lists a Volvo 850 which was tested 
during 1994.   
 

Vehicle Mass Test Speed C1 C2 C3 C4 C5 C6 Cave 

Volvo 850 1442 kg 56.3 kmh
-1 

41.9 45.7 48.8 49.5 46.5 43.1 46.0 

Note: All crush measurements in centimetres.  Width of front of vehicle 167 cm 
 
To simplify matters an average of all the crush measurements can be taken to produce 
just one value for crush against impact speed.   In this example, the average crush was 
46.0 cm for an impact speed of 56.3 kmh-1. 
 
Due to the design of vehicles impacts at very low speeds tend not to produce any residual 
crush.  Rather the vehicle bumpers absorb the energy of impact and rebound to their 
original shape.  It is important to have some estimate of this threshold speed.  In the 
absence of a large data set with which to use statistics to generate the threshold speed, 
the only alternative is to guess.  For this Volvo 850 a reasonable threshold speed is 
probably about 5 mph (8 kmh-1) 
 
Speed / damage graphs 
With the information acquired so far it is possible to produce a graph of speed against 
residual crush.  This is shown in Figure Two. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Since this is a straight line graph, it is very easy to determine the equation of the line.  With 
the data shown on the graph the equations in both sets of units become, 
 

Vcm/s  =  29.15 C + 223  and Vkm/h  =  1.05 C + 8 

Figure Two. 
Graph to show speed against residual crush 
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These equations are useful in their own right as they form an alternative description of the 
EBS mentioned previously.  For example, if a Volvo 850 is involved in a head-on accident 
with a barrier and that the average crush depth is measured at 35 cm, the equations show 
that the initial speed of the Volvo was almost 45 kmh-1.  If the Volvo suffered the same 
damage due to a collision with another vehicle, it is not possible to calculate the initial 
speed.  We cannot even find the change in velocity of the Volvo, since nothing is known 
about the energy absorbed by the other vehicle.  What can be calculated however is the 
amount of energy absorbed by the Volvo due to the collision. 
 
By deriving similar speed / damage equations for the second vehicle as well, the energy 
absorbed by this vehicle could also be determined.  With knowledge of the masses of the 
vehicles the standard Delta-V equation, (A) can then be used to find the respective 
changes in velocity. 
 
 
Force / crush graphs 
Rather than go through this process for every collision to work out the energy absorbed, a 
more user friendly solution would be to derive a graph that showed energy against crush 
directly.  In reality a graph of force against crush turns out to be even more useful.   
 
The net effect of what we are trying to achieve is to convert the vertical (speed) axis of the 
graph in Figure Two into a force.  Since force is a vector quantity we should really consider 
the speed to be a velocity by defining a direction.  As a first stage we need to find a 
relationship between velocity and force.  To do this consider the relationship both these 
quantities have with acceleration.  Using calculus notation we can define acceleration in 
several standard ways, 
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The third variation is the most appropriate version for this purpose.  The velocity is already 
defined and the expression dv/dt can be read as the rate of change of velocity with 
distance.  This is exactly what the gradient (b1) of our graph represents – the variation of 
velocity with crush distance.  So we can rewrite the equation to give, 
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An expression for the velocity (v) already exists and is the equation of the graph in Figure 
Two which in generalised terms is given by, 
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Substituting for v gives, 
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From Newton’s Second Law and substituting for acceleration we obtain, 
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v = velocity 
x = displacement 
t = time 



This only gives the total force if the whole of the front of the vehicle is deformed.  It is more 
useful if we divide the above equation by the length of the damaged area L to give an 
expression for the amount of force per unit width of damage.  If we do this and multiply out 
the brackets we obtain, 
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Our two coefficients, A and B, can now be defined as, 
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Substituting in equation D gives an expression for the force per unit crush of, 
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This enables us to draw our desired graph with the additional benefit that equation (E) is 
the equation of the line.  This graph is shown in Figure Three.  Before drawing the graph it 
is worth considering the fact that we really need the energy absorbed by the force F acting 
through the distance C.  This is given by the area under the graph since the definition of 
energy is of a force acting through a distance to produce a displacement.  In the notation 
used here this becomes, FCE    With suitable annotation to show the three areas which 

are under the graph the graph become, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
By summing the three parts shown in Figure Three, the total area under the graph and 
therefore the energy per unit width can be found as, 
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Figure Three. 
Graph to show force against residual crush 
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The total energy is therefore this expression multiplied by the total width of the damage 
giving, 
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This is of course equation (C) as stated above without the additional term to allow for 
angled impacts.  We can use this equation directly in calculations provided the crush 
damage is of constant depth, so that C is therefore a constant over the whole damage 
depth.  Unfortunately this sort of damage is rarely seen in practice, so yet more 
modification is needed before we have an equation which can be used in all situations.   
 
Another way of visualising the amount of crush caused to a vehicle is to consider a vehicle 
as consisting of a number of deformable springs.   A force applied to these springs 
compresses them and due to the compression energy is absorbed.  This also helps with 
considering the real nature of the A and B coefficients derived earlier.  Figure Four shows 
one side of a vehicle as a series of these springs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The stiffness of the springs is used in the programs as the B coefficient, a high stiffness 
implies that more force is required to compress them.  Note also that the springs project 
beyond the outside of the vehicle.  This highlights the fact that a certain amount of force is 
required before permanent deformation results.  In equations (A) and (C) this is 
represented by the A coefficient.   
 
By taking this analogy one stage further, a physical meaning of the G coefficient can also 
be derived.  Since a force is required to compress the springs through a distance, work is 
performed and therefore energy expended, as discussed earlier.  The energy absorbed in 
crushing the springs just to the outside edge of the vehicle results in no deformation.  If 
permanent deformation is caused, then this ‘pre-crush’ energy must have already been 
expended.  For a particular set of coefficients this is a constant and is given by the G 
coefficient in the equations. 
 

Figure Four. 
Modelling the side of a vehicle as a series 
of springs 



Individual crush zones 
All damage profiles can be represented by a series of crush zones.   For simplicity we 
show in Figure Five just one crush zone flanked by dotted lines indicating adjacent zones.  
The zone can be defined with two crush measurements, C1 and C2 and the width of the 
zone L.   Without deriving the equation, which requires more advanced maths, we shall 
simply state the energy equation which represents the amount of damage absorbed by an 
individual crush zone.   
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Each crush zone is a quadrilateral and these can be considered as consisting of a 
rectangle and triangle.  With this information the total area of a quadrilateral can be 
determined as, 
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The centre of mass of the quadrilateral is a little more difficult to derive but again a 
consideration of the separate triangle and rectangle which make up a quadrilateral help.  
The position of the centre of mass is given by the equation, 
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Once the area and position of the centre of mass have been determined, the energy 
absorbed can be calculated by substituting these into equation (F).  The techniques 
described here for calculating the energy represented by one crush zone can be applied to 
any number of zones although it does get a bit tedious.   Once this is done however the 
total energy absorbed by the damage profile is found as the sum of all the individual 
energies from each of the crush zones. 
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Figure Five. 
Individual crush zones 

L = width of zone 

x  = displacement of centre of mass of zone 

area = area of zone 



Example calculations 
As an example we can take a head-on barrier collision, involving the Volvo 850 which 
results in conveniently shaped damage as shown in Figure Six. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The data obtained and the results of the various calculations are listed in the table below. 
 
Data for Volvo 850 test vehicle 

 Value How obtained 

Mass 
*1442 kg 

 (14.42 Ns/cm) 
Measured 

Width of front 167 cm Measured 

Threshold speed (b0) 223 cm / s Estimated 

Gradient of speed / damage 
graph (b1) 

29.15 s
-1 
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A coefficient 561 N / cm
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Data for collision vehicle 

Mass  1200 kg Measured 

C1 35 cm Measured 

C2  48 cm Measured 

dL 70 cm Measured 

Area 2905 cm
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Position of centre of mass  
(Longitudinal Displacement) 

21 cm 
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Energy absorbed ** 61096 joules areaxBareaAdLGE   
 
* Since we are using centimetres, the appropriate unit of mass in these calculations is not measured in 
kilogrammes (which can be expressed as Ns/m) but in Ns/cm. 
** Due to measurements in centimetres, we need to divide the values obtained by 100 to convert to the SI 
units of joules. 

Figure Six. 
Crush damage caused to Volvo 850. 
 
C1  = 35 cm 
C2  = 48 cm 
L  = 70 cm 

L 



Note that equation (F) does not have any term involving the mass of the test vehicle.  This 
is effectively eliminated from the energy calculation by the way that the A and B 
coefficients are calculated.  We can and should therefore use the actual mass of the 
vehicles involved in the collision in the Delta-V equations. 
 
We now have a value for the energy absorbed in the collision.  It is a simple matter to 
insert the known values into equation (B) to obtain, 
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Let us now assume that the Volvo (vehicle one)  is in collision with a Ford Escort (vehicle 
two) which has a mass of 1050 kg.  The same pattern of damage emerges on the Volvo 
and similar calculations for the Escort reveal that the absorbed energy amounts to 84000 
J.  Note that there is no physical reason why the energy absorbed by each of the vehicles 
should be the same.  By Newton’s Third Law, the force acting between the two vehicles 
should be similar, but the energy is not so constrained. 
 
The standard Delta-V equation (A) can be used to determine the change in velocity of the 
Volvo and the corresponding equation used for the Escort.  This gives, 
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Of necessity these examples are fairly simplistic, but should serve to illustrate that it is 
possible to perform simple crush analyses using no more than a calculator.  Other 
complications, such as energy magnification due to angled impacts, the effects of non-
central impacts, or multiple crush zones have been ignored.   

 
 

Problems with crash testing 
Recent research by Neptune3 suggests that some of the published crash test data may 
contain incomplete data.  The cause of the problem is that some, more modern, vehicles 
are fitted with bumpers constructed of a rubber based material.  Due to their construction 
the bumpers may rebound after impact to their original shape but importantly the 
underlying structure of the vehicle remains crushed. 
 
This has been referred to as the ‘air-gap’ problem as the bumper creates a gap between 
the rebounded frontal face of the vehicle and the distorted vehicle behind. 
 
The correct method for measuring crushed vehicles should involve measuring by pushing 
the rubber bumper inwards until the solid crushed structure is reached.  Neptune reports 
that some of the crash testing facilities are allowing for the air-gap in this way, but that 
others may not.   
 



The effect of incorrect measuring is to reduce the amount of crush recorded on the test 
vehicle.  Since the impact speed is known this results in an increased B coefficient, 
assuming that the threshold speed remains constant.  Overall this could result in 
overestimates of the impact speed where an investigator measures the vehicle correctly in 
the field.   
 
This is of course an undesirable state of affairs and it is to be hoped that revised 
measuring procedures are implemented.  It is only on the more modern vehicles that this 
phenomenon is noticed, so in reality this problem is unlikely to affect the validity of the 
crush coefficients used by either EDCRASH or Ai Damage.  These coefficients are based 
on large data sets of crashed vehicles which were tested prior to 1992.   
 
Care must be taken however if individual vehicles are used to generate crush coefficients 
for ‘by-hand’ calculations as described in this paper.   
 
Partial overlap testing is now becoming popular, particularly since the New Car 
Assessment Programme (NCAP) began.  This has given researchers the opportunity to 
test the CRASH3 model against partial overlap data.  Neptune3 reports that in his 
research, the CRASH3 model performs well.  
 
 
Summary 
Two methods of determining the change in velocity of a vehicle involved in a collision were 
explained.  Both methods require crash test data.  A simple linear equation to determine 
the EBS for head-on collisions was proposed and this was extended to develop the 
coefficients used in the CRASH3 derivative programs.   
 
An example of how to use the crash test data to derive the change in velocity for a simple 
two vehicle collision was presented.  The model presented is incomplete in that it does not 
allow for angled impacts, energy magnification and the effects of non-central impacts. 
 
The air-gap problem was discussed together with the potential effects. 
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