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Abstract

The change of a vehicle’s velocity due to an impact, DeltaV (Av) is often calculated and
used in the scientific investigation of road traffic collisions. Two types of model are in
common use to achieve this purpose, those based on the conservation of linear and
angular momentum and the CRASH model which also considers the conservation of
energy. It is shown that CRASH and major implementations of the momentum models
are equivalent provided certain conditions are satisfied. Explicit conversions between
the main variants of the models are presented. A method is also presented which
describes a new formula for determining the total work performed in causing crush to a
particular vehicle. This has the advantage of incorporating restitution effects and
yields identical results to the momentum only models.

Although the CRASH model has received adverse criticism due to perceived
inaccuracies in the results, little work has been performed to determine the theoretical
limitations on accuracy. This thesis rectifies that shortcoming. A Monte Carlo
simulation and analytical model are developed here to provide two independent
methods for determining the overall accuracy of the CRASH method. The principal
direction of force was found to be the most likely to introduce error based on the
CRASH assessment. It is shown how this and other sources of error in the CRASH
model can be quantified for a particular collision suggesting priorities for minimising the
overall uncertainty. The data from a series of well known crash tests are used with

each of the models to provide comparison and validation data.

It is recognised that without additional data velocity change is of limited use for forensic
investigation. However DeltaV can be used as a proxy for acceleration and is
particularly useful in studies involving injury causation. A method is also presented
here which uses the change in velocity sustained by a vehicle in a planar collision to
estimate the velocities of a vehicle before and after a collision. This method relies
solely on conservation laws and is also applicable to situations where the coefficient of
restitution is non-zero. An extension to the method is also described which allows an
initial estimate to be modified to generate more realistic directions of force. This
extension has the desirable effect of reducing uncertainty in the estimation of the

direction of force which significantly improves the overall accuracy.
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Notation

AB

AB,C

stiffness coefficients

coefficients used in Brach’s impact model

distance of point of action from centre of mass

coefficient of restitution

energy absorbed by each vehicle

perpendicular distance from the vehicle’s centre of mass to P
yaw moment of inertia

radius of gyration for each vehicle

mass of each vehicle

unit vector in the direction of Py

impulse due to the collision

linear velocity of the centre of mass of each vehicle before impact
component of the velocity of the point of action before impact
linear velocity of the centre of mass of each vehicle after impact
component of the velocity of the point of action after impact
angle of impulse p to face of vehicle

angle between p and closing velocity vector

difference between aand gi.e.{=a- 8

coefficients used in determining crush energy in Singh’s method

scalar factor k?/(k*+h?)

scalar factor 1+h?/ k® i.e. 1/y
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A angle between closing velocity vector and direction of travel of vehicle
U tangential impulse coefficient such that P, = py P,

(7 principal direction of force

[0) angle of point of action relative to vehicle heading

Av velocity change at centre of mass due to impact, v — u

AV component of the velocity change at the point of action, V — U
v impact angle between the vehicles

Aw change in angular velocity due to the impact, Q — w

@ angular velocity of the vehicle before impact

Q angular velocity of the vehicle after impact

Subscripts

m,n,0 mass subscripts used in solution to Ishikawa’s impact model

motion normal to the impact plane

motion along the line of action of P

motion perpendicular or tangential to the line of action of P
vehicle 1

vehicle 2

relative value at the point of action of the impulse P

Xi
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Chapter 1

Introduction

1.1 Objectives

In this Chapter the motivation behind this research is explained. The scope and limits
of the research are also described. The original contribution made by this research is

summarised and criteria are defined by which this work can be evaluated.

1.2 Scope of the thesis

Two main models are currently used to forensically analyse road vehicle collisions.
The first type of model is based on the conservation of linear and angular momentum
and is exemplified by the models by Brach [11], Ishikawa [43] and Steffan [111]. The
second type is the CRASH algorithm as described by McHenry [65] and Smith [105].
Solution of the momentum models requires the post-impact trajectories and velocities
of each vehicle. Such data is frequently obtained from ephemeral evidence at the
scene, usually tyre marks from which the post-impact trajectories and velocities can be
determined. In the absence of such scene data solutions using the momentum models
become impractical. CRASH takes as input the vehicle crush damage from which an
estimate of the change in velocity (DeltaV or Av) of each vehicle can be obtained. The
increased use of ABS braking systems has led to an increase in the number of
collisions where insufficient scene data exists to perform momentum based

calculations. This leads to an increased reliance on the CRASH calculations.
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Criticism has been levelled by Brach [11] and others [132] concerning the overall
accuracy of CRASH and its dependence on user estimated values, primarily the
principal direction of force (PDOF). Brach [9] also expresses doubt over the inclusion
of an energy adjustment factor which he claims does not have a sound theoretical
basis and may be somewhat arbitrary. It is important to explore these criticisms and to
quantify how these factors affect the results of calculations.

At present CRASH does not provide an estimate of the actual velocities, just the
DeltaV. A substantial extension to the CRASH model will be to derive a new method
whereby the actual velocities of the vehicles can be determined. This innovation will
increase the application of CRASH to real-world collisions and will represent a
significant advancement within this field.

The main aims of this research are then threefold and can be summarised as follows

e To quantify factors affecting accuracy of DeltaV and predicted speeds
e To determine the relevance and accuracy of energy adjustment factors in
CRASH calculations

e To develop a method to determine actual vehicle velocities from DeltaV values

1.3 Research Objectives

The main aims of this thesis can be subdivided into a series of objectives. For

evaluation purposes these objectives are listed below

o Determine how the various impact phase models are interrelated.

e So that consistency can be achieved, describe a systematic method to
determine crush damage profiles.

o Determine whether the energy adjustment factor commonly used by CRASH
accurately models reality.

¢ If not, determine whether there an alternative adjustment factor which can be
utilised or developed.

¢ Determine the overall accuracy that can be expected from CRASH analyses.

e Determine the most significant factors affecting the accuracy of CRASH.

e Ascertain whether it is possible to determine the actual velocities of vehicles
from DeltaV values.

o Describe techniques which can be used or developed to reduce uncertainty in

the most significant factors affecting accuracy.
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1.4 Limitations

This research considers only the impact phase of a collision; the pre and post impact

phases are well documented elsewhere. Since the majority of impact phase models in

use are planar, only planar models are considered in this work. In practice this is not

unduly limiting since the majority of road vehicle collisions are essentially planar in

nature.

1.5 Original contributions

The original contributions provided by this research are as follows

1.

It is shown that the momentum based models of Brach [11] and Ishikawa [43]
are equivalent. It is shown that the CRASH algorithm can be separated into two
distinct parts. The first determines the amount of work done in causing crush.
The result of the first part is then used as input into the second part which
determines the change in velocity of each vehicle. Significantly it is shown that
provided that certain criteria are met, namely that the impact plane is orientated
perpendicular to the impulse, the second part of the CRASH model is also
equivalent to the momentum models and yield identical results. Explicit

methods of converting between the various models are described.

The measurement protocols used to systematically determine crush energy are
summarised and consolidated. A new technique is demonstrated to cater for

collisions where one or other vehicle is significantly bowed.

It is shown that the standard energy adjustment factor used by the first part of
CRASH and described by McHenry [65] does not generate the same energy
values as predicted by the models of Brach [11] or Ishikawa [43]. An
alternative energy adjustment factor is developed which does produce energy

values which match those predicted by the momentum models.

The accuracy of CRASH is explored in detail and the major factors affecting
accuracy are identified. Two methods of analysing accuracy are considered, a

purely analytical method and a Monte Carlo simulation. It is found that both
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methods yield similar results. The overall accuracy of certain types of collisions

are found to be inherently less accurate than other types of collisions.

A method to determine actual vehicle velocities from DeltaV values is
developed and validated against a well-known series of test collisions. The new
method does not rely solely on CRASH generated DeltaV values, but can be
used with DeltaV values derived from any other technique. This new method
provides a significant enhancement to the overall knowledge in this area.

It is also shown that the method to determine actual vehicle speeds can be
utilised to provide a better estimate of the PDOF values applicable to each

vehicle. This substantially improves the overall accuracy of CRASH.

The final contribution of this work is to provide a significant theoretical basis

upon which further research can be built in the area of road vehicle collisions.

1.6 Organisation of the thesis

The remainder of this thesis is organised as follows

Chapter 2 provides an overview of the existing research in this area and shows
the equivalence of the models considered by this research.

Chapter 3 provides a description of the measurement protocols designed to
obtain crush measurements. This Chapter aims to consolidate the existing
protocols from a wide variety of sources and discuss differences between them.
An extension to the protocols is described resulting in a new protocol to
consistently and accurately measure significantly bowed vehicles.

Chapter 4 describes existing energy adjustment factors and shows how they
can be related to results obtained using the momentum models. It is shown
that the existing adjustment factors do not match the results obtained from
momentum models. A new adjustment factor is developed which does match
the results from momentum models. The results of applying this adjustment
factor to real-world collisions is explored in brief in this Chapter with a more

complete analysis in Chapter 7.
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Chapter 5 provides an analysis of the accuracy that can be expected from the
CRASH algorithm using analytical techniques. A model is developed using
Mathcad and applied to a series of well-known test collisions.

Chapter 6 describes a Monte Carlo simulation of the CRASH algorithm. A
Mathcad model is developed to perform the simulation. The results from a well-
known test series are analysed using the simulation model and compared with
the analytical model presented in Chapter 5.

Chapter 7 shows how changes in velocity data can be used to determine the
actual velocities of vehicles in a collision. For validation the method is applied
to a series of test collisions using both the standard energy adjustment factor
and the new energy adjustment factor developed in Chapter 4

Chapter 8 summarises the conclusions reached by this research. The research
is evaluated and suggestions are made for further work in this area.

The appendices contain much of the data obtained as a result of this research
and listings of the Mathcad models used in Chapters 5 and 6.

1.7 Summary

This Chapter has explained the motivation and scope for this research. A summary of

the contributions to knowledge are described together with an outline of the thesis and

the criteria by which this work can be evaluated. In the next Chapter a summary of the

existing research in this field is presented.




Chapter 2

Crash Phase Models

2.1 Objectives

In this Chapter the scope of the current research is outlined to provide a description of
the main crash phase models in current use. The strengths and weaknesses of each
model are highlighted and it is demonstrated how the models are interrelated.

2.2 Introduction

The forensic investigation of collisions between vehicles is a relatively recent pursuit
although the theory underlying such investigations has a much longer history. One of
the earliest references to collision theory is Thomas Harriot's manuscript on the Theory
of Impacts which is dated to 1619 [86]. In 1687 Newton published his Philosophiae
Naturalis Principia Mathematica which forms the basis of impact theory and also
modern crash investigation. A useful reference describing the current theory is
provided by Stronge [113]

From the perspective of a forensic investigator a collision can be considered as
comprising three main phases. There is an initial pre-impact phase where the vehicles
move towards impact, the collision phase itself where the vehicles interact with each
other and finally a post-impact phase where the motion of the vehicles from impact

towards rest is considered.
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The pre and post impact phases are concerned mainly with the analysis of tyre and
other marks on the road surface. Techniques to establish the speeds of vehicles from
these marks are well established. Simple examples are described in [104] or [102]
Such techniques yield considerable information about the behaviour of vehicles during
the pre and post impact phases. With the increased use of anti-lock braking systems
(ABS), tyre marks are becoming less common. The presence of water on a road
surface also decreases the chance of suitable tyre marks being found on the road
surface. In situations where there are no tyre marks, any model based on the analysis
of those marks cannot succeed and the determination of pre-impact speeds in
particular becomes more problematic. There are a variety of methods that provide
information on vehicle speeds in the absence of tyre marks. One such method
involves the use of the pedestrian throw distance discussed, for example, by Evans
and Smith [106]

Where there are no tyre marks, an analysis of the impact phase of the collision
becomes more relevant to forensic investigators and is often the only source of
information concerning the behaviour of the vehicles. This research considers the
modelling of the impact phase of a collision. It examines the existing impact phase
models and considers their various strengths, weaknesses and accuracy. It also seeks
to develop a new model to generate more relevant results and to quantify the accuracy

of these innovations.

Crash phase models tend to fall into two broad categories, those based solely on the
conservation of linear and/or angular momentum and the CRASH model which also
considers the conservation of energy. Three main crash models are used to describe
the crash phase of a collision. Two are momentum based models as defined by
Ishikawa [42] and Brach [9]. The third model is the CRASH algorithm developed during
the 1970’s and described by McHenry [65].

Although several other models also exist, such as those by Woolley [130] and that
used in PC-CRASH [111], these are similar in many respects to the momentum based
models considered in detail by this research. An overview of the basic assumptions
made by the three main crash phase models is provided in the next section together

with a summary of the salient features for each of the models.
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2.3 Description of the existing models

2.3.1 Common theory and assumptions

In this research planar collisions only are considered. In a planar collision each vehicle
has three degrees of freedom, two parameters describing the motion of the centre of
mass and a third parameter describing the rotation of the vehicle. The three crash

phase models examined in this research make a number of common assumptions,

1. Tyre and other external forces are assumed to be negligible during the impact,

so that momentum is conserved.

2. The vehicle masses and moments of inertia are maintained throughout the
collision. That is the deformations caused by the collision do not significantly
change the moments of inertia and the masses of the vehicles are not
significantly changed, for example, by parts of a vehicle becoming detached as

a result of the collision.

3. The time dependent impulse can be modelled as one force, its resultant (P)
which acts at some point in or on the vehicle.

The conservation of linear momentum is based on the linear form of Newton’s Second

and Third laws and leads to the equations
m1(V1 - ul) =mAv, =P , (2.1)
m, (v, —u,) =m,Av, =—P (2.2)

where m is the mass of each vehicle, P is the impulse and u and v are the initial and
final velocities and Av is defined as the change in velocity v - u. Subscripts 1 and 2
refer throughout to vehicles 1 and 2 respectively. In collinear collisions, the line of
action of the impulse P passes through the centres of mass of the vehicles and there is
no change in the rotational velocity of either vehicle. If P does not act through the
centres of mass it produces a change not only in the motion of the centres of mass, but

also a rotation of each vehicle about the centre of mass given by
Mk} (€, —a) =mk'Aay =hP (2.3)

mk>(Q, —w,) = mk>Aw, =—h,P (2.4)
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where k is the radius of gyration, h the moment arm of the impulse about the centre of
mass, w and Q are the pre and post-impact rotational velocities of each vehicle and Aw
represents the change in rotational velocity Q — w. In a vehicle to vehicle collision it is
not unreasonable to assume that the masses, radii of gyration and moment arms for
each vehicle are known or can be obtained easily. Equations (2.1) - (2.4) then form a
system of four equations with eight unknown velocity variables. Provided that four
velocity variables can be established then complete solutions for the remaining four
variables can be determined. The momentum based models utilise equations (2.1) -
(2.4) and attempt to provide methods to establish solutions for the unknown velocities.
Particular solutions using momentum alone are exemplified by the models proposed by
Brach [9] and Ishikawa [42] and these are examined in more detail.

Figure 2.1 shows the vehicle based reference frame and notation used by this
research. The position of the point of application relative to the centre of mass of a
vehicle can be described using the distance d and angle ¢. The parameter h is the
length of the moment arm of the impulse about the centre of mass. In this research
the length of the moment arm tangential to the impulse h; is also relevant and is utilised

in Chapter 7.

Figure 2.1: Vehicle based reference frame
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The First Law of Thermodynamics leads to the conclusion that in a closed system, the
total energy is also conserved. The assumption that an impact between two vehicles
may be modelled as a closed system allows the development of an equation describing
the energy transfer as a result of that collision,

muZ +muZ + mkZaf + mkZa? =my; +myV; +mk Q2 +mkiQi +2E  (2.5)
where E denotes the work done in deforming the vehicles.

Equation (2.5) provides another equation and another relevant unknown variable, the
total work performed. This forms a system of five equations with nine unknowns. In
general, if five values can be estimated by some method, then a complete solution can
be obtained for the remaining variables. This forms the basis for the CRASH model

which is also examined in more detail.

2.3.2 Brach’s Model

Brach has published several descriptions of his Planar Impact Mechanics (PIM) model
since 1983 and his model is described extensively in the literature and compared with
existing crash test data. A comprehensive explanation of his PIM model is contained in
[7], [8] and [11]. Figure 2.2 shows a diagram illustrating the coordinate systems used
in the PIM model.

Figure 2.2: Coordinate Systems used in Planar Impact Mechanics
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In essence Brach’s PIM model considers the conservation of linear and angular
momentum in a orthonormal coordinate system oriented to an impact plane which is
established parallel to a hypothetical contact surface common to both vehicles. The
impact plane is related to the x-y coordinate system by the angle I.

The impulse due to impact is resolved into two components, normal and tangential to
the impact plane. The resulting six equations and eight unknowns are supplemented

with two coefficients to provide additional constraints and thereby generate a solution.

Brach defines a coefficient of restitution normal to the impact plane (e,) which is
defined as the ratio of the relative normal velocity post impact to the relative normal
velocity pre impact. Brach also introduces another coefficient, the impulse ratio yu. This
is effectively a coefficient of friction and is defined as the ratio of the normal and
tangential impulse components. Brach’s solution to equations (2.1) - (2.4) is a series of

equations which are shown in Appendix A and summarised below

v, =U, +m(l+e U, q/m,
Ve = Uy +ﬂa(1+en)u rd /My,

Von = Uy, _a(l+en)Uan/m2!

= (2.6)
V,, =U,, —um(l+e,)Ug.q/m,,
Q, = o, +m(L+e,)Ug, (0, — phy)g/ (mk?),
Q, =w, +ml+e,)Ug,(h, — uhy)q/ (m,k3)
where
m=mm,/(m +m,),
_(VRn /URn)’
u=PIP, (2.7)
Uz, -hw, —u, +ha,
1.4 mhl mhf [ mhh, mh2h2t
q mk2 m2k22 a mk2 mkZ |

The subscripts n and t represent component variables normal and tangential to the
impact plane. From equation (2.6) it is relatively straightforward to determine the total

change in velocity (Av) of each vehicle. This is discussed further in section 2.5.3

11
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Brach [11] shows that an important quantity in the PIM model is the value p, which is
the impulse ratio p that provides a common post-impact velocity tangential to the
impact plane, i.e. where

V,

1t

=V,,. (2.8)

For vehicle to vehicle collisions the point of application of the impulse on each of the
vehicles frequently reach a common velocity. In the PIM model this condition is
satisfied when

e =0, (2.9

1= 1y (2.10)

The parameter | is described by Brach as the critical impulse ratio

rA+B(l+e
Ly = @+e,) (2.11)
(1+e,)2+C)+rB
where
r=Ug /Ug,
=12 =12
A=1+ mhlz + mh22 ,
mlkl m2k2
B:mm?+mm@ﬂ (2.12)
mlkl m2k2
o mhe ke

mkS mpk;
This terminology allows the value of the parameter g in the PIM model to be expressed
using

%zA—yB (2.13)

Brach’s model takes as input the initial velocities and provides the final velocities as
solutions. In collision reconstruction, the desired output is normally the initial velocities

and this limits the utility of PIM. Using an iterative process the initial velocities can be

12



2. Crash Phase Models Jon Neades

adjusted until the desired output is obtained and Brach [11] provides several hints as to

how that process may be performed.

As a side effect to this model, Brach outlines how the principal direction of force
(PDOF) can be determined from the ratio of the normal and tangential impulses. He
also outlines a method for determining the total energy loss. In their later work Brach
et al. [13] extend this technique and partition the total energy loss into normal and
tangential components. This aspect is discussed in more detail in Chapter 4.

2.3.3 Ishikawa’s Model

Ishikawa’s model [42] is similar in many respects to planar impact mechanics proposed
by Brach. Ishikawa also defines an impact plane to resolve the impulse into normal
and tangential components. Where Ishikawa’s model differs from Brach is that he
proposes the utilisation of two coefficients of restitution, one normal to the impact plane
(en) and the other tangential to the impact plane (e;). These are defined such that the
relative velocities of the point of application before (U) and after (V) impact are given by

Ve, =—€.Ug,s Vi =—€Upg, (2.14)
where

URn =Uy, — h2a)2 —U, + hla)11 VRn =V, — hZQZ —Vi, t th1 (2 15)
Ug =Uy +hyo, Uy =y, Vg =V, + 0, Q, =V —h, Q)
Ishikawa does not attempt to solve the equations directly for either the pre or post
impact velocities, but instead provides a solution for the impulse components, P, and
P; using the relative closing speeds and relative separation speeds at impact.

Ishikawa’s solution makes extensive use of a factor gamma () which is defined as

k?_

AN 2.16
k2 + h? (2.16)

7/ =
where Kk is the radius of gyration and h the length of the moment arm. This factor
implicitly takes account of the rotational effects caused by the application of an impulse

at a distance h from the centre of mass of a vehicle.

13
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Ishikawa’s solutions are shown in Appendix B and summarised below

1
) =——————[mUg, A+e,)+mmmU,. (1+e)],
) .
d =m[mtum @+e)+mmmU, (1+e,)]
where
m. = V1M 5,M, ’
71nm1+7/2nm2
my,.m
m, = Vi ThY My ’ (2.18)
VM + 75 M,

_hh, b,

°mk? mk2’

11 22
and
_ K _ky
Yin k2+ 2 Van k2+h2’
! 22 (2.19)

i .k

1i ' 2

" kZ+h? 'kZ+h2

From the impulse components, P, and P; it is straightforward to use equation (2.1) to
determine the change in velocity sustained by each vehicle. If either the post-impact or
pre-impact velocities are known, then it is then possible to determine the remaining

linear velocities.

Ishikawa does not provide explicit solutions to determine the change in rotation of each
vehicle. However the change in rotation can be derived from equations (2.1) - (2.4) as

it can be shown that

h
Aw, = %Avl, Aw, =—2Av,. (2.20)

ki k
Ishikawa uses the ratio of the two impulse components obtained when there is a
common post-impact velocity, i.e. e, = e, = 0 to establish a method for indexing

collisions. This particular aspect is not relevant to this research and is not discussed

14
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further. Ishikawa also discusses the relationship between the energy loss as a result of
the collision and the two coefficients of restitution. He shows that the two coefficients
of restitution e, and e, are related to the impulse ratio p by the equation

e = mUg (L+e,)(z—mmy) 1 (2.21)
MU g, (1— zm my)

Provided the same orientation of the impact plane is used in both Ishikawa’s and

Brach’s models and that provided there is a common value for e,, equation (2.21)

provides a useful way of converting Brach’s impulse ratio p into Ishikawa’s tangential

coefficient of restitution e;. In the reverse scenario, the normal and tangential

components determined from Ishikawa’s model can be used to define Brach’s impulse

ratio.

2.3.4 The CRASH Model

From earlier work by Mason and Whitcomb [63], Campbell [16] derived a method to
estimate the energy involved in causing vehicle crush. With the assumption that the
work done in causing crush was the only factor causing a loss of kinetic energy in the
system, an estimate could then be made of the Equivalent Barrier Speed (EBS). This
concept was extended by McHenry [65] on behalf of the Cornell Aeronautical
Laboratory (later Calspan Corporation) during the late 1970s and eventually developed
into the CRASH algorithm. The name itself is an acronym for Calspan Reconstruction
of Accident Speeds on the Highway. Various variations of the algorithms were
developed, CRASH in February 1976 through to CRASH3 in February 1981. All
variants share the same underlying principles and for the purposes of this research can
be considered equivalent. CRASH was initially designed to run on a mainframe
computer however these algorithms were adopted by a variety of manufacturers for
use on personal computers. In the UK the most common derivatives in use are
probably AiDamage [74], EDCRASH [26], and WinCrash [124]

Although originally intended as a tool for assessing accident severity, CRASH has
been widely adopted by the crash investigation community. This is probably because
where there is insufficient information as to the desired output velocities, methods
based on the conservation of momentum alone cannot succeed e.g. Brach’s PIM.

Information about the collision severity and changes in velocity can still be obtained

15
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from an analysis of the damage sustained by each of the vehicles and this is the basis
for CRASH.

CRASH comprises a series of modules to estimate the change in velocity (Av) of a
vehicle from the damage sustained by each vehicle (E; and E,). Post-impact trajectory
simulation modules are also included to establish post impact speeds. The damage
only part of CRASH utilises the conservation laws of momentum and energy to
establish the change in velocity of vehicles involved in a collision. The assumption is
made that the points of application of the impulse reach a common velocity during the
approach phase of the collision. This is known as the common velocity condition. With

this assumption, Tsongas [117] shows that the CRASH equation can be expressed as

AVl — \/2}/17/2m2(E1+ EZ) — I 271(E1 + EZ) ) (222)
m, (7,m, + 7,m, ) \/ [1 7/1mlJ
m| 1+
V.M,

Equations (2.1) and (2.2) lead to an expression relating the two changes in velocity
from which the change in velocity of vehicle 2 can be derived

m
Av, =—Av, —2 (2.23)

m,
The change in velocity calculated by this method is the change in velocity of the centre
of mass of each vehicle along the line of action of the impulse. From Newton’s Second
Law it follows that there can be no change in velocity at the centre of mass tangential

to the impulse so CRASH implicitly defines the total change in velocity.

The incorporation of a coefficient of restitution allows the changes in velocity to change
beyond that required simply to reach a common velocity. As Brach [11] indicates this
requires that a common velocity is achieved both parallel to and tangentially to the
impulse. Smith [105] shows that some relaxation to the common velocity condition can
be achieved by incorporating a coefficient of restitution parallel to the impulse e,. His

derivation provides an expression for the change in velocity

Avl:\/2717/2m2(E1+E2)(1+ep) _\/ 2m,(E, +E,)(1+e,) (2.24)

mi(?”lmi"'Vzmz)(l_ep) B m1(m152+m251)(1_ep)
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where 6 = 1/y. Smith’s derivation is utilised in Chapter 7 where it is shown that it is
possible to relax the common velocity condition still further to model collisions where a
common velocity is not achieved either along the line of action or tangentially to the

impulse.

A variety of methods can be utilised to determine the crush energy, the damage
analysis part of the CRASH algorithm can therefore be viewed as two separate
techniques although they are commonly quoted as one technique. The first technique
is to establish an estimate of the work done in causing deformation and the second is
to calculate the change in speed.

The second part of the CRASH algorithm takes as input the work done in causing
deformation to each vehicle and outputs the change in speed for each vehicle. Rose et
al [95] describe the CRASH algorithm as a quasi-one-dimensional model. They argue
that although rotational changes is implicitly incorporated into the model (through their
description of y as an ‘effective mass’ factor) any change in velocity is implicitly
assumed to take place along the line of action of the impulse. In practice this means
that the user needs to define the line of action of the impulse or principal direction of
force (PDOF).

The requirement to estimate a PDOF is a regarded as a major weakness by several
commentators (e.g. Brach [11], Woolley [132]) since it is difficult to estimate this
quantity reliably or consistently. Smith and Noga [108] for example suggest that the

PDOF for each vehicle may be subject to a range of £20° for different investigators.

CRASH has received a considerable amount of criticism since its release mainly
concerning some possible inadequacies and overall accuracy of the model e.g.
Woolley [132]. It is worth noting that the introduction to the CRASH3 User's Manual
states [117]

CRASHS3 is not, nor was it intended, to be a high fidelity collision
simulation program. In most accidents, only a minimum amount of data
are available, and even these data are only available second hand.
CRASHS is intended primarily as a tool for making a standardized

assessment of an accident’s severity.

Despite these comments CRASH remains a popular algorithm within the forensic

investigation community. The potential accuracy of CRASH is discussed in detail in
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Chapter 5 and Chapter 6. In the next section the CRASH technique to determine the

work done in causing crush is discussed.

2.4 Determining the work done in causing crush

In order to generate a solution some method must be applied to determine the work
done in causing deformation to the vehicles and thereby the values of E; and E,. The
derivation by Smith [105] shows that a solution is not dependent upon any particular
energy loss model to determine the crush energy so that any suitable model may be
used. It was found in early studies of frontal rigid barrier tests e.g. Campbell [16] that
for impact speeds above about 20 mph (9 ms™) a near linear relationship between the

impact speed and crush depth was obtained as shown in Figure 2.3

Figure 2.3: Campbell’s Results
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Campbell described the linear relationship as

v=Dhb,+bC (2.25)
where

V = Impact speed (mph)

b, = y-intercept (mph)

b, = gradient (mph/inch)

C = Average crush (inch)

(2.26)
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Campbell showed that this is equivalent to a linear force / crush model to describe the

force per unit width and has the form shown in Figure 2.4

Figure 2.4: Force per Unit Width
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The equation of the graph in Figure 2.4 is
F=A+BC. (2.27)

Campbell made the assumption that in a barrier impact, all the kinetic energy of the

vehicle at impact is converted into residual crush, i.e.
1 2
E:Em(b0+b1C) . (2.28)

The work done in deforming the vehicle can be determined by integrating equation

(2.27) with respect to the distance crushed (C) and the damage width (L) i.e.
E=[ [ (A+BC)dCdL (2.29)
o ) . .

If it is assumed that the crush is uniform over the entire damage width (as is likely with
frontal barrier impacts), equation (2.28) can be substituted into equation (2.29) and
solved to produce expressions for A and B and a constant of integration G in terms of

by and b, i.e.

2
G—A

=25 (2.30)

The constant of integration G corresponds to an expression for the work done on the

vehicle which is performed with no residual crush. Campbell’'s methods were
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developed by McHenry [65] who derived a similar model using Emori's [27] earlier
assumption that the crush to vehicles can be modelled as a linear spring. McHenry
devised a practical method which divided the crush area into a number of discrete
crush zones defined by a series of crush measurements as shown in Figure 2.5

Figure 2.5: Crush zone measurements
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Each crush zone is thereby defined by two crush measurements and the width of the
zone |. The work done in causing crush to each zone can then be described by the
equation

2

E= S—Bl + A(area) + B x(area) (2.31)

where x is the displacement of the centre of mass of the zone perpendicular to the

original surface and area is the area of the each crush zone, i.e.

_ Cl+CC,+C?

X = , (2.32)
3(C,+C,)

area=1(C, +C,)/2. (2.33)

Typically 2, 4 or 6 crush measurements are used to define a complete damage profile
and McHenry provided explicit solutions to cater for each of these numbers of
measurements. McHenry also used the geometric properties of crushed area to define
the point of application of the impulse. The CRASH model he describes uses the

geometric centre of the damaged area, the damage centroid, as the point of application
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of the impulse. Again, McHenry provides explicit solutions for 2, 4 or 6 crush
measurements to define the position of the damage centroid. Neades [74] extended
McHenry’s work in the implementation of AiDamage to allow an unlimited number of
crush zones to be defined. Singh [100] also shows that with a arbitrary number of
equally spaced crush measurements, C,; to C,and by assuming a constant stiffness for
all crush zones, the total force F and work done in causing crush E can be determined

by

n-1 B
Fe2Re L(M 2n-1) "7]’ e
_ L (ﬁ+%+MJ (2.35)
(n-1{ 2 6 2B
where
n= Z[Ci +Ci 4]
i=1 (236)

n-1
2 2

K= I:Ci +CC +Ci+l]
i=1 '
If it is assumed that the initial kinetic energy of a vehicle is converted into crush, as is
the case for a car to barrier collision, then the initial speed of the vehicle is known as
the equivalent barrier speed (EBS) or barrier equivalent velocity (BEV). With this
assumption, equation (2.35) can be equated to the initial kinetic energy of the vehicle.

Substitution of equation (2.30) then produces
(n—1EBS? = (byby +bix+b7 (n-1)). (2.37)

Singh [100] shows that for non-uniform crush profiles the quadratic b; in equation

(2.37) can be determined as

by + [ (0y77)? — 4x(n—1)(b? —EBS?) /3

by = 2% /3

(2.38)

Similar derivations can be made to determine stiffness coefficients from angled
collisions and collisions with moveable barriers.  Singh [99] extended this model to

determine analytically the value of by, which is helpful in providing an estimate of this
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parameter. His derivation however requires knowledge of the time over which a
common velocity was achieved during the impact. This effectively means that it can
only be used for test collisions where a suitable acceleration-time history of the test
impact exists. It also makes the additional assumption that the peak force reached
during the impact is equal to twice the average force.

Prasad [90], [88], [89] noticed that in an extensive series of crash tests the vehicles

tested were found to be linear in \/2E /L against residual crush. He reasoned that since

the change in velocity equation (equation (2.22)) required energy as an input, then it
made more sense to determine stiffness coefficients which provided energy directly.

As a result he reformulated the crush damage equation to give

ZTE =d, +d,C (2.39)

where the coefficients dy and d; in equation (2.39) are related to the A and B
coefficients as follows
A
dy=—, d,=+/B. (2.40)
JB
Prasad showed that the linear impact speed / crush relationship described by Campbell
continued to hold for more modern vehicles (up to 1990). A and B coefficients for real
vehicles can be calculated from the results of existing crash tests using the methods
described by Prasad, Neptune [80], or Jean [46].

A comprehensive summary of the stiffness coefficients obtained for a variety of vehicle
categories is given by Siddall and Day [98]. Their work forms the basis for the
coefficients used in a number of commercially available CRASH based programs e.g.
AiDamage [74]. Hague [39] updated the frontal coefficients again in 2005 and showed
that there was a general trend relating vehicle stiffness and model year. He found that
more modern vehicles tended to be stiffer and therefore have higher coefficients than

older models.

Techniques for measuring vehicles to obtain the input values required to determine the
work done in causing crush are described by Neades and Shephard [75] and are

discussed in Chapter 3. Kerkhoff et al. [54] noted that at high impact speeds vehicle
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the linear response of crush and impact speed at lower speeds may not be valid at

higher speeds as shown in Figure 2.6

Figure 2.6: Speed / Crush Graph for US Ford Escorts
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In effect there is a softening of the vehicle at higher impact speeds. Hague [39]
suggests that this may be due to the energy absorbing structures at the front of the
vehicle becoming saturated and the occupant compartment beginning to collapse.
From a series of similar tests, Varat et al. [121] noted that a quadratic model provided a
good fit to the data. They proposed a bi-linear approximation to determine the
relationship between impact speed and crush with a change in slope at an impact
speed of 30 mph. Additional techniques are also proposed for example Wood [126]
where a power law is described to show the relationship between energy absorbed and
residual crush. Other methods also exist for estimating the work done in causing
deformation. One such technique involves a visual comparison of the damage

sustained with vehicles crashed at known speeds.

All these models are essentially based on the response of the vehicle to head-on crash
tests at various speeds. This is not the case in the majority of real-world collisions. An
enhancement proposed by McHenry in the CRASH User’'s Manual [117] is to correct
the work done as calculated by the standard CRASH analysis technique by a factor to
allow for impulses which do not act perpendicularly to the measured surface. This

energy adjustment factor is defined in the CRASH User’s Manual as,

E=E (l+tan’ @) (2.41)
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where E; is the calculated work, E is the corrected work performed and a is the angle
formed between the direction of the impulse and the undamaged surface of the vehicle.
Brach [11] criticises the calculation of crush energy calculations and in particular the
energy adjustment factor described above. He asserts that there is no physical basis
for this adjustment and instead proposes a method whereby the work done can be
partitioned in normal and tangential components [13]. A more detailed description of
how the work performed is calculated by CRASH is provided in Chapter 4 together with
a discussion of the validity of the energy adjustment factor in equation (2.41).

2.5 Relationships between the models — similarities and differences

Since all the models are planar models, then any impact which has a substantial
vertical force component cannot be modelled. These include rollovers and falls. The
momentum based models such as those exemplified here by Brach and Ishikawa have
the advantage of being able to potentially model a wide variety of impacts and can be
considered to be more general in their application than CRASH. CRASH, at least in its
traditional form, cannot be used unless a common velocity is achieved at the point of
contact between the vehicles during the approach phase. This effectively excludes

sideswipe impacts from being modelled in CRASH.

The requirement to estimate the total amount of energy lost as a result of the collision
also means that CRASH will calculate an underestimate whenever a significant amount
of energy cannot be estimated. For example, CRASH will underestimate the velocity
change for impacts with pedestrians, animals and other objects which do absorb some
energy. It is possible to model a collision with a motorcycle or truck as a collision with
a barrier [74]. Barriers are defined in CRASH as objects which do not themselves
absorb energy. Unless some alternative method is available to estimate the energy
lost in causing crush, then CRASH will underestimate the change in velocity. Collisions
between vehicles where there is significant override or underride of the main structural

members tend too to render the estimation of the crush energy unreliable [65].

All the models make the assumption that the resultant impulse (the impact centre) acts
at a single fixed point. Ishikawa [42] demonstrates that this point is not fixed during an
impact, but moves to a certain extent. The location of the impact centre is defined by
McHenry [65] in CRASH as the geometric centre of the damage profile. Inevitably this

definition positions the point of application away from the physical line forming the
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damage profile. Both Brach and Ishikawa suggest that the location of the point of
application should be chosen so as to lie on the damage profile. Ishikawa [42]
proposes a method to determine the position of this point. However this method
requires prior knowledge of the impulse components and angular velocity which are to
some extent determined by the choice of impact centre. As such, the utility of this
method in practical forensic investigation is questionable. In any event the choice of
the location of the impact centre is one that requires estimation by the user and is thus
subject to error

2.5.1 Equivalence of Brach’s and Ishikawa’s models

The similarity between the two momentum based models has already been mentioned
and provided the same impact plane is used for the PIM and Ishikawa’s models,
identical results can be obtained. The equivalence of the two models can also be
shown. Ishikawa [43] defines impulse components as outlined in equations (2.17).
From these equations Ishikawa shows that the ratio of the impulse components () is

R mmmU. (Q+e)+mU,(1+e)

H=—= . (2.42)
Pn mnrr]ImOURt(1+et)+anRn(1+en)

This can be solved for the normal coefficient of restitution e, in terms of the tangential
coefficient e, and the ratio of the impulse components p to give equation (2.21).
Equation (2.42) can also be solved to give an expression relating the two coefficients of

restitution i.e.

1+, mU. (z—mm,)

- . (2.43)
1+e, mU.@Q—xmm,)

There are obvious similarities between the coefficients A, B and C used in Brach’s
model [equations (2.12)] and the coefficients m,, m; and my [equations (2.18)] in
Ishikawa’s model. Further analysis shows that the coefficients are related by the

expressions

m

m,m, - _
(1+C)’

m=————~— m. =

m B
= — 2.44
(m +m,)’ " A’ M Mo m (2.44)
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Appendix C shows these relationships and derived products which facilitate conversion
between Brach’s model and that of Ishikawa. Substitution of equations (2.44) into

equation (2.43) and solving for p produces

_ (+e)rA+B(l+e,)
A Wre)1+C)+rBLie)

(2.45)

Brach defines the critical impulse ratio o as the impulse ratio © which gives a common
post-impact velocity tangential to the impact plane, i.e. e, = 0. When e, is zero then
equation (2.45) simplifies to become identical to Brach’s critical impulse ratio shown in

equation (2.11).

2.5.2 Coefficients of restitution

In both momentum models two coefficients are required to generate solutions. In the
PIM model these are a coefficient of restitution normal to the impact plane e, and p
which is the ratio of the normal and tangential impulse components. Ishikawa’'s model
utilises two coefficients of restitution, e, which is defined in the same way as Brach’s
coefficient of restitution and e, which is a tangential coefficient of restitution.
Conversion between the two models can be achieved through equations (2.21) and
(2.44). As shown by Smith [105] CRASH can also utilise a coefficient of restitution e,
acting along the line of action of the impulse.

Brach [13] states that in the majority of collisions involving light vehicles, relative
tangential motion at the impact centre ceases prior to separation of the vehicles. In his
PIM model a common tangential post-impact velocity is achieved when u = o Similarly
in Ishikawa’s model this will be achieved when e; = 0. In the standard form of CRASH,
a common tangential velocity is assumed. Considerable research has been directed
towards establishing estimates for a coefficient of restitution along the line of action of
the impulse, or normally to an impact plane. Smith and Tsongas [110] reported a
series of staged collisions where they found that the coefficient of restitution was
between 0 and 0.26. They concluded that in general lower values of restitution tend to
be found as the closing speed increases. Little information is available to indicate their
methodology but it seems likely that these collisions were central and that restitution
was calculated along the line of action of the impulse. Wood [125] also suggests a

similar relationship based on a series of full scale crash tests with a maximum
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restitution of about 0.3 Rose, Fenton and Beauchamp [94] investigated the effects of
restitution for a single type of vehicle (a Chevrolet Astro van) in head-on collisions with
a barrier. They found that the coefficient of restitution varied from 0.11 to 0.19 for
impact speeds around 47 — 57 kmh™. Cipriani et al. [21] studied a series of vehicle to
vehicle collinear impacts with low speeds up to 7 ms™ and discovered that restitution
varied from about 0.2 to 0.6 with the lower values found for higher impact speeds.
Brach [13] suggests that restitution ranges from 0 to 0.3 for light vehicle collisions with
the majority of values at the lower end of that range. At lower closing speeds it is
apparent that restitution effects can be significant.

Both the PIM and Ishikawa models are forward iterative models. In use they require
the pre-impact velocities to be defined from which it is then possible to determine the
post-impact velocities. The input data is adjusted until the output data matches some
desired post-impact scenario. For forensic collision investigation, in practice this
means that without knowledge of the post-impact velocities, such as those obtained
using traditional methods, it is difficult to obtain reliable solutions and this is a
disadvantage. Brach [11] does attempt to address this issue by using a technique he
describes as LESCOR (Least Squares Collision Reconstruction). In this technique a
spreadsheet is used to iterate through suitable ranges of input data to determine the
best fit to some known quantity. Examples he uses include matching the post-impact
speeds to known speeds and matching the energy loss calculated by PIM to that

determined from CRASH measurements.

As previously mentioned, CRASH requires an estimate of the PDOF. This is required
to determine the line of action of the impulse and also to determine the magnitude of
the energy adjustment factor described by McHenry [65]. It is recognised that this
parameter is difficult to estimate and this has been used to indicate the unreliability of
CRASH [108], [132], [3]. However it should be noted that the models of Brach and
Ishikawa also require an estimate to determine the orientation of the impact plane.
Ishikawa [42] suggests that the impact plane is formed by the common surface forming
the damage profile of each vehicle. Brach [13] identified that where there was a
common post-impact velocity (e, = 0 and p = o) the choice of impact plane is
immaterial as identical results are obtained for all orientations of the impact plane. In
other types of collision, the choice of the impact plane affects the specific values of e,
and u required to obtain a particular solution (e, and e; in Ishikawa’s model). Brach

also provides guidelines for choosing the orientation of the impact plane. His
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suggestion is to nominally define the impact plane to the mean angle between the
attitude of the vehicles at impact and use a range of values to examine the uncertainty
associated by this choice.

2.5.3 Equivalence of CRASH and momentum models

Through the explicit incorporation of the conservation of total energy in the system as
described by Smith [105], the CRASH solution as shown in equation (2.24) takes as
input the masses of the vehicles, the lengths of the moment arms and the work done in
causing crush. This part of the CRASH algorithm is entirely separate from any model
describing how the crush energy value may be obtained. The conservation laws are
common to all three models, thus it should be possible to use common data in each
model and obtain identical results. For example it should be possible to use the total
kinetic energy lost derived from Brach or Ishikawa’'s models and use this as input to
CRASH. Although the energy calculated from Brach or Ishikawa’s models can be used
directly, to obtain identical results in each of the models a common impact plane is
required. If not then coefficients of restitution are not common between the models.
This requirement is relaxed somewhat in Chapter 4 where a technique is described to
transform coefficients of restitution between differing impact planes. An explanation as

to how impact planes can be aligned follows.

Brach [9] and [10] shows how the momentum change in each vehicle can be written

using his model as

mAv = I2rﬁ(1+y2)qEL(l+e2n) (2.46)
\j (1—en)+2,ur—ﬂ
where
u.=rl1+e). (2.47)

(Note that in Brach [10] equation (2.46) appears to have been misprinted so that the
(1+ ) term appears incorrectly as (1+p) and the numerator in the final term reads
incorrectly as p°r instead of pr’.) When p is zero then by definition Brach’s (or

Ishikawa’s) tangential impulse component must also be zero. When the tangential
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impulse component is zero, this corresponds to an impact plane perpendicular to the

total impulse P. Where [ is zero, equation (2.46) reduces to

mszléﬂEQEfﬁ (2.48)
(1_ en)

and since  is zero, g in equation (2.48) can also be simplified and can be found from

k2 k2
1o —mhlz + _mhzz (2.49)
q mk;  myk;

Equation (2.49) can be expanded and solved for q to give

(m, +m,)k’k;
g= (2.50)
mk; (k; +h;) +mpk; (k7 +h7)
Equation (2.48) can therefore be expressed as
M AV, = 2mm,E (1+e,) (2.51)
[ mik? (k3 +hg) +myk? (k7 +h7) [ (L-e,)

The CRASH solution as shown in equation (2.24) can also be written in a similar

manner to equation (2.48) to show the change in momentum of each vehicle

(2.52)

may, = |72 (E FE)Are,)
(am, +7,m;)(L=€,)

From the definition of y in equation (2.16), equation (2.52) can be expanded to produce

MAW=J[ 2mm, (E, +E,)(A+e,) 253

mk; (k] +h5)+mykZ (k7 +hf) | (L-e,)

Equation (2.53) is therefore shown to be equivalent to equation (2.51) with e, = e, and
E. = E; + E,. This demonstrates that the part of the CRASH algorithm to determine
velocity change from the energy loss (equation (2.24)) can be regarded as a special
case of the more general Brach or Ishikawa models. Specifically the special case of
CRASH will be achieved when the impact plane in Brach’s or Ishikawa’s models is

orientated so as to be perpendicular to the total impulse P. It can also be seen that

29



2. Crash Phase Models Jon Neades

CRASH therefore implicitly defines an impact plane; one which is perpendicular to the

total impulse.

A further condition implicit in the discussion above, is that a common tangential velocity
is achieved at the point of application of the impulse. In Ishikawa’s model this will be
achieved when e; = 0. In Brach’s PIM model a common tangential velocity is achieved
when U = Wp. Since W is zero, this implies that the numerator in the equation to

determine |, in Brach’s PIM model (equation (2.11)) must also be zero, so that

0=rA+B(l+e,) (2.54)

The implications of this relationship are discussed further in Chapter 7.

2.6 Crash test data
The National Highway Traffic Safety Administration (NHTSA) was established in 1970

as an agency of the US Department of Transportation (DOT). Their mandate is to
carry out safety programs concerning road vehicles. As part of their road safety
program they maintain and publish a comprehensive database of a series of crash
tests [83]. The database contains details of over 6800 crash tests dating back to 1978.
A variety of tests are recorded such as those for the New Car Assessment Program
(NCAP), barrier tests and car to car impacts. This crash test database is the main
source of data for determining stiffness coefficients for use in CRASH analyses.
Similar data is not published from the Euro NCAP tests and without detailed crush
measurements this series of tests is not suitable for determining stiffness coefficients or

for validation purposes.

A series of 12 vehicle to vehicle crash tests were performed during the late 1970s to
provide validation data for the Simulation Model for Automobile Collisions (SMAC) and
CRASH. The results were published by Jones and Baum in 1978 [51] and the test
series has since become known by an acronym derived from the title of their paper,
Research Input for Computer Simulation of Automobile Collisions (RICSAC). Several
authors have analysed the RICSAC tests in detail and a number of discrepancies
between those analyses are apparent e.g. Smith and Noga [109] and Brach [6]. It is
also apparent that in several of the tests there are significant discrepancies between
the recorded damage profiles and the photographs of the damage. Nevertheless, the

series of tests are useful for validation purposes.
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Several other vehicle to vehicle crash test series also exist such as those performed by
ITAI for their crash test days at Leyland [29] and Lotus [45]. These tend to be more ad-
hoc but again provide useful validation data. Woolley and Kinney [131] provided data
for 45 reference cases involving two vehicle collisions. This data set was generated
using the SMAC model rather than from actual crash testing so its utility for validation is
questionable.

2.7 Accuracy

A key aspect to forensic collision investigation is an ability to quantify the likely errors
and sources of errors in any particular case. Most of the research relating to the
accuracy of the various impact models tends to be empirical in nature comparing the
correlation between a particular model and crash tests. For example, Brach and Brach
[10] provide an analysis of how his PIM and CRASH models compare with the RICSAC
test data. Lenard et al. [56], [57] consider the accuracy of CRASH compared with a
series of collisions. There is little information available however concerning the

theoretical accuracy of each of the models with variation in the input parameters.

Bartlett et al. [3] discuss the uncertainly in collision investigation measurements in a
general way. This discussion is continued by Fonda [32] who considers in more detail
the uncertainty in the collision phase. An early (1982) paper by Smith and Noga [108]
provided an analysis of the confidence limits applicable to measurements for CRASH.
They concluded that for low DeltaV collisions (10-15 mph) the mean sensitivity was

+17.8% For high DeltaV collisions (25-30 mph) the mean sensitivity was +£13.7%.

More recently (2004) Singh [100] performed a detailed statistical analysis to determine
the confidence limits applicable to the stiffness coefficients A, B and G as used in
equation (2.30). This work is extended in Chapter 5 where the theoretical confidence
applicable to impact phase models is considered in detail. In Chapter 6 a Monte Carlo

simulation for the CRASH model is presented to further analyse confidence levels.
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2.8 Summary

In this Chapter the three main impact phase models were discussed in some detail.
Similarities between the models were highlighted which show that the momentum
based models of Brach and Ishikawa are essentially different representations of the
same model. In addition it was shown that the CRASH model is equivalent to the
momentum models. CRASH implicitly defines an impact plane which is orientated
perpendicular to the impulse and provided a common impact plane is used in each of

the models identical results can be achieved.

In the next chapter a series of measuring protocols are described. These enable
investigators to determine the work done in causing crush to each vehicle and thereby
establish the input parameters E; and E, to use in the CRASH model as described in
equation (2.24)
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Chapter 3

Measurement of Crush Damage

3.1 Objectives

In this Chapter a series of techniques are described to enable investigators to measure
vehicles and thereby obtain an estimate of the work done in causing crush to each
vehicle. The damage profile is an important factor in determining the total work done,
as too are the direction of the impulse and location of the point of application of that
impulse. A comprehensive description of the measuring process as applied in the UK
is not available elsewhere and is crucial to overall accuracy so is included in this
Chapter. The overall objective is to describe measuring protocols so that investigators
are able to produce consistent and reproducible results. A new technique is also

described for measuring severely bowed vehicles.

3.2 Introduction

The CRASH algorithm as described earlier has lead to the development of computer
programs to estimate the changes in velocity (DeltaV) sustained by a vehicle in a
collision. In essence the CRASH algorithm estimates the work done in causing crush
from a series of crush damage measurements. The work done in causing crush is then
used to determine the change in velocity of individual vehicles. Commonly used
implementations in the UK are AiDamage [74], EDCRASH [26], and WinCrash [124].

Although such programs are often capable of using scene data for simulations and

momentum analysis, it is the damage-only option which is of particular interest since
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the techniques can often be used when there is insufficient information to perform more
traditional analyses. A variety of information exists in the literature which describes the
algorithms used and their derivation, as discussed previously, but little is available
which describes exactly what measurements should be taken. A notable exception is
that by Tumbas and Smith [118]. There remains a considerable amount of confusion
as to which methods of measuring produce the most realistic results. The purpose of
this chapter is to provide an overview of a series of simple measurement protocols
which have been developed in the UK to overcome some of the traditional
measurement difficulties. Substantial parts of this Chapter were published in Impact 17
(1) in 2009, pp 4 — 12,

3.3 Background

Alongside the development of the original CRASH program came the descriptive
Collision Deformation Classification (CDC) [1]. This was developed from an earlier
coding known as the Vehicle Deformation Index [112]. Using the CDC it is possible to
concisely define a description of the damage caused to a vehicle using a seven
character alphanumeric code. The code is limited in that it can only describe uniform
perpendicular crush, as only one character is allowed to specify the maximum extent of
the damage. More complicated damage profiles cannot therefore be defined. An
estimation of the CDC is still required in some programs e.g. EDCRASH [26], but the
maximum extent is ignored if additional data is supplied in the form of actual
measurements describing the damage profile. One part of the CDC which is not
ignored is the user estimation of the principal direction of force (PDOF) which is
arguably the most difficult factor to estimate. Those programs which do not use the
CDC still require an estimate of this parameter and this is discussed in more detail

later.

The theory underlying the determination of the change in velocity from an analysis of
the crush damage sustained was discussed in Chapter 2. Following work by Campbell
[16] , McHenry [65] , Prasad [89] , Smith [105] and others it was shown that the change

in velocity can be determined from the equations

\ _ [PEFENAre)
5\ m(me, +ms)a—e,)

(3.1)
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m
Ay, =—Av, —2 (3.2)
m,

The two energy parameters in equation (3.1) E; and E, represent the amount of work
done in causing crush to each vehicle. These are of particular interest since if it is
possible to estimate these values to a reasonable degree of accuracy then it follows
that a realistic solution can be obtained. One technique to obtain an estimate of these
values was described by Campbell [16] who showed that the amount of crush is
approximately linear with respect to the impact speed with a damage threshold speed

(intercept) by and gradient b;.

Methods described by Neptune [80], Prasad [88] and Jean [46] show how Campbell’s
linear relationship can be used in practice to derive two stiffness coefficients (A and B)
which describe how the depth of crush is related to the work done in crushing the
vehicle. These techniques are based on head-on collisions between vehicles and solid
immovable barriers. In a head-on collision with a barrier, the crush sustained by the
vehicle will be approximately uniform. As described in Chapter 2 it can be shown that

the two stiffness coefficients A and B are related to by and b, as follows
m m
A=—bb, B=—b 3.3
- b L (33)

To determine the two coefficients, suitable values for by and b; are required. The most
commonly used and comprehensive database from which stiffness coefficients can be
obtained is the NHTSA crash test database [83]. This database contains detailed
descriptions of a variety of tests defined mainly by the US Government to meet various
safety criteria such as the New Car Assessment Programme (NCAP). As safety
requirements have changed over the years, these criteria have altered to match. As a
result of these criteria therefore the majority of collisions involve moderate speed
impacts of around 30 — 35 mph. Lower speed impacts are rare. This has a
consequent effect on the ability to estimate the threshold speed b, since all the data

tends to be clustered around 30 — 35 mph.

The clustering of data at around 30 — 35 mph means that there are few if any data
points from which to determine a realistic best-fit line using linear regression. As a
result, the value of by is very often estimated when determining A and B coefficients.

Both Neptune [80] and Strother et al. [114] suggest a reasonable value is about 5 mph.
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Varat et al. [121] in a comprehensive study of crash tests suggest that for vehicles

manufactured during the 1970s and 1980s a suitable value for byis 7.5 mph.

McHenry [65] provides explicit solutions to determine the values of E; and E, for either
two, four or six crush measurements. Neades [74] extended this model to cater for an
unlimited number of crush measurements and Singh [99] provides a mathematical
description of a model which permits an unlimited number of uniformly spaced

measurements.

Inherent in this method generally is the assumption that the vehicle is of uniform
stiffness. Since the sides and rear of a vehicle may well behave differently to the front,
separate stiffness coefficients are normally defined for front, rear and side impacts. All
the CRASH derivative programs make extensive use of generic stiffness coefficients
which are used when specific coefficients for a particular vehicle are not available.
These are derived from the NHTSA database. The generic coefficients partition the
vehicle data set into a number of categories or classes of vehicle dependent on the
wheelbase. Hague [39] suggests that a better classification may be to partition the
database by model year rather than wheelbase. Hague cautions that although vehicle
specific stiffness coefficients should in theory lead to more accurate representations of
the stiffness coefficients, incomplete or inaccurate data in the NHTSA database can

lead to erroneous results.

3.4 Crush Measurements

3.4.1 General

Other input data for damage measurement takes the form of a series of crush
measurements (C; — C,) from the vehicles involved together with the width of the
damaged area (L) and an offset (d) describing the displacement of the centre of the
damaged area with the centre of mass of the vehicle. Usually the crush measurements
are obtained by measuring a damaged vehicle and then comparing these with similar
measurements taken from an undamaged vehicle. The crush sustained by the
damaged vehicle can then be determined by simple subtraction and entered into the

program.

Figure 3.1 summarises the basic measurements required by CRASH derivative

programs which are discussed in more detail in subsequent sections.
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Figure 3.1: Measurements Required by CRASH programs
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Several assumptions are inherent in the measurement process. First it is assumed that
the front of the vehicle is a straight line and that the vehicle can be represented as a
rectangle. In essence a real three dimensional vehicle ends up being represented by a
two dimensional rectangle. Crush damage to a vehicle can take the form of direct
contact damage between the vehicles or induced damage. Direct damage and induced
damage which is contiguous to the direct contact damage should both be included in

crush measurements.

Since real-world collisions frequently result in a non-uniform vertical crush, the level at
which the measurements are taken is of great importance. As noted by Tumbas and
Smith [118] crush measurements generally should be taken at frame height around the
vehicle. For front and rear impacts this will be at bumper height. Where there is a
distinct difference between the level of maximum intrusion and frame level (which often
occurs in side impacts due to override by the impacting vehicle) measuring at sill or
bumper level tends to generate an underestimate of the total energy absorbed.
However if measured at the level of maximum intrusion the energy absorbed tends to

be overestimated. A better estimate of the true value therefore probably lies
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somewhere between these two extremes. It is therefore suggested that for side
impacts in particular, the height at which the crush measurements are obtained is the
mid-point between frame level and maximum intrusion. A similar process is also
suggested by Tumbas and Smith. Otubushin and Galer [84] indicated that for
completeness a series of crush measurements is taken, at the level of maximum crush,
at mid-level and at sill/lbumper level. When estimating DeltaV values however, for
frontal impacts they utilise the bumper level of crush and for side impacts the mid-level

crush.

In any event the process required is to establish a baseline parallel to the undamaged
face of the vehicle under investigation either parallel to the longitudinal or lateral axes
of the vehicle as appropriate. Crush measurements are then taken at intervals from
the baseline to the along the length of the damaged area to form a description of the
damage profile.

One problem for an investigator is to determine the length of the damaged area L. The
process as described in the CRASH Manuals is to split up the baseline into equally
spaced segments and take the crush measurements. A similar process is described by
Struble [115]. The baseline width L as shown in Figure 3.1 then forms the
measurement L which can be entered into the program. Note that this can result in a

smaller value for the damage width L than the true width of the vehicle.

A smaller value for L reduces the area of damage which in turn results in an
underestimate of the energy absorbed in crush and therefore an underestimate in the
value of DeltaV. This problem was recognised by Smith and Tumbas [118]. Their
recommended solution was to measure the L parameter in the field as described
above, so that an appropriate spacing could be determined but subsequently enter the

actual length into the program.

Although the Smith and Tumbas [118] solution works well for regular damage profiles,
it does not work so well for those damage profiles where only part of the vehicle width
is damaged, or where the profile is irregular. This is because the crush depths
measured in this way do not necessarily correlate when irregular damage profiles are
encountered. A more appropriate solution is that developed by Jennings [47]. This
method assumes that the damage profile retains a consistent length compared with an

undamaged vehicle, although it will be twisted into a different shape. A similar
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assumption was made by Wood et al. [127] although their calculation of crush energy

was somewhat different.

In this method the damage length L is determined by measuring directly along the face
of the damage. The spacing between the crush zones can then be determined and
crush measurements taken from the baseline to the relevant points. The measured
value of L is inserted into the program and removes the use of arbitrary adjustments
suggested by Smith and Tumbas [118]. A secondary beneficial effect is that
corresponding points on damaged and undamaged vehicles are compared directly.

The standard CRASH algorithm defines a maximum of six crush measurements which
does not always permit a realistic representation of the damage profile to be obtained.
This was noted by Struble [115] who recognised that six equally spaced crush
measurements can mask or omit details of the profile. He suggested moving one or
more of the measurements to capture such detail where necessary. Such an
adjustment will introduce additional errors. An alternative is to use a greater number of

measurements to capture the profile as is described by Neades [74] or Singh [99].

3.4.2 Determining the damage offset measurement d

The damage sustained by a vehicle does not always extend over the whole side of the
vehicle, particularly for those collisions involving side impacts. Some collisions result in
damage which not only causes crush to the vehicle but also distorts the original to such
an extent that it moves outside the bounding rectangle. Some method to locate the
damage profile in relation to the original vehicle is required. This is achieved by the
use of a damage offset measurement d. Note that this parameter, together with the
direction of the impulse (PDOF), affects the length h of the impulse about the centre of

mass which in turn affects the calculation of the value for 6 used in equation (3.1).

The EDCRASH Training Manual [28] follows CRASH [65] and states that the offset
measurement d is the difference between the centre of the damaged area and the
centre of mass of the vehicle. This is a reasonable definition although it does
presuppose that the location of the centre of mass is readily identifiable. Since the
centre of mass of a vehicle is not readily identifiable in the field this can be problematic.
In practice a field measurement to the centre of the vehicle may be desirable from

which the actual offset can be determined.
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3.4.3 Side impacts

Side impacts between the wheels of a vehicle can cause a vehicle to bow. Bowing is
defined as a vehicle which distorts during the impact so that the ends of the vehicle curl
round towards each other. A similar effect is noticed in end-wise collisions where the

wings fold inwards due to a pole impact. This effect is shown in Figure 3.2

Figure 3.2: Bowing of a vehicle due to side impact

Additional deformation due to

bowing and not crush

Vehicles which are not bowed can be measured in much the same way as described
previously. A vehicle which is significantly bowed however would result in the
investigator recording higher crush measurements, since the bowing contributes to the
net depth as illustrated in Figure 3.2. It is possible to quantify the amount of bowing
present by measuring the lateral displacement of the non-struck ends of the vehicles
using a process described by Tumbas and Smith [118], but this does not lead to a
simple method for recording the true crush of the vehicle. It can be argued that since
the bowing of the vehicle must itself be caused by a force acting through a distance,
then any apparent additional crush ought properly to be included in the measuring
process. However this may lead to an overestimate of the crush damage. In the
absence of empirical data to support this argument, it is suggested that any apparent

crush due to bowing is removed.

An alternative protocol is proposed which negates the effect of any bowing and
generates a more accurate representation of the true crush sustained by the vehicle.
This method requires the construction of a reference frame around both the damaged

vehicle and its undamaged counterpart. Measurements are taken at the same equal
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spacing along either side of the vehicle together with the distance measured along the
datum lines. It is important to start the measurements at a readily identifiable point on
the vehicle so that measurements from an undamaged vehicle generate a one-to-one
correspondence with the damaged widths. The method proposed here allows the
calculation of the width of the vehicle at various points along the damage profile as
shown by the dashed lines in Figure 3.3. For clarity only the first damaged
measurement (W) is shown on the diagram. The same method when applied to all the
points allows the true width of the vehicle to be determined at each point.

Figure 3.3: Measurement protocol for bowed vehicles

v

v

By Pythagoras, the width at each point along the damaged profile (W;) can then be

calculated from the equation,

W, = /(8 —D)*+(A-C,—E)’ (3.4)

Measurements are also taken at corresponding points on an undamaged vehicle to
generate the undamaged width at those points. The difference between the two widths
is the crush sustained by the vehicle at that point. From a series of such

measurements the damage profile can then be calculated.
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3.4.4 Determining the principal direction of force (PDOF)

As shown in Chapter 2, the CRASH algorithm calculates the total change in velocity
and it is the direction of the user defined PDOF which determines the orientation of that
impulse. The PDOF also affects the magnitude of any energy adjustment factor as

discussed in Chapter 4.

In practice the PDOF in generally estimated from a visual inspection of identifiable
components on the vehicle. It is rarely possible to estimate the PDOF precisely. An
estimate is also made of the likely range of values the PDOF might take for a particular
vehicle. By Newton’s Third Law the estimates of PDOF for each vehicle then
determine the orientation of the vehicles at impact since the impulse acting on one
vehicle must be opposite in direction to the impulse acting on the other. It follows that
the angle between the two vehicles at impact (¥) can be determined from the two
PDOF angles (0) as

¥Y=r-0-6, (3.5)

For some collisions it is possible to align the damage profiles of the two vehicles to
assist in determining the angle between the vehicles at impact (¥). Where the PDOF
on one vehicle can be estimated reasonably well, the orientation of the two vehicles

can then be used to estimate the likely value for the PDOF of the other vehicle.

In a substantial number of collisions some indication of the pre-impact behaviour of the
vehicles is known, such as the direction of travel. The orientation of the vehicle crush
profiles to estimate the attitude of the vehicles at impact can then be used to limit the
range of possible values for the PDOF on each vehicle.

In collisions where sufficient data exists to perform calculations using some other
model, such as the momentum models described by Brach [11] and Ishikawa [42] an
alternative estimate of the impulse angle becomes available. This can then be used to
determine the PDOF values used in the CRASH model.

The requirement to estimate a PDOF in CRASH is a regarded as a major weakness by
several commentators (e.g. Brach [11], Woolley [132]). It is noted however that the
models of Brach and Ishikawa also require an estimate to be made to determine the
orientation of the impact plane. As explained in Chapter 2, CRASH also defines an
impact plane, albeit implicitly. CRASH effectively defines an impact place that is

orientated perpendicular to the impulse. It is suggested that the requirement to
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determine an impact plane for the models of Brach and Ishikawa inherently suffers

therefore from similar problems as those involved in determining the PDOF.

Ishikawa [42] suggests that this plane is formed by the common surface forming the
damage profile of each vehicle. A similar choice in CRASH would indicate that the
impulse and therefore the PDOFs lie perpendicular to the common damage surface.
Brach [13] also provides guidelines for choosing the orientation of the impact plane.
His suggestion is to nominally define the impact plane to the mean angle between the
attitude of the vehicles at impact and use a range of values to examine the uncertainty
associated with this choice.

The techniques described above do allow a reasonable estimate to be made of this
parameter for each vehicle. Any such estimates will inevitably be subject to error.
Smith and Noga [108] for example suggest that the PDOF for each vehicle may be
subject to a range of +20° for different investigators. Suitable ranges of estimates
should be used to determine the sensitivity of the results as discussed in Chapter 5. A
method of refining an initial estimate of the PDOF to match scene data is developed in
Chapter 7

3.4.5 Determining the point of application

A common factor in all the planar impact models described, is the assumption that the
resultant impulse can be modelled as passing through a single point on each vehicle.
A variety of techniques have been proposed to establish the location of this point. In
reality the impact centre varies during the impact as demonstrated by Ishikawa [42]. It
is difficult to accurately determine the location of the impact centre at any particular

time so any technique which generates a single point can only be an approximation.

CRASH [65] defines the point of application as the centroid of the damaged area.
Geometric methods can be used to establish the relative position of this point to the
centre of mass. Brach [9] suggests that this point may be located by using a suitable
location on the residual crush surface or along the maximum deformed surface.
Ishikawa [42] proposes a systematic technique for determining the location of this
point. However this technique requires a knowledge of the linear impulse components
and angular velocity. Since these values themselves depend on the choice of the point

of application, the practical utility of the technique is questionable. An analysis of the
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sensitivity of the position of the point of application to the overall result is discussed in
Chapter 5.

3.5 Variations in stiffness

In the CRASH algorithm, it is assumed that the face of the vehicle in question is
homogeneous. The stiffness coefficients are generally designed to approximate the
entire face of the vehicle. Frontal barrier crash tests most closely approximate this
behaviour. In reality individual structural components will have different responses to
crush forces and can be expected to distort at different rates. Side impact testing is
generally performed using a vehicle sized barrier which is impacted into the centre side
of the target vehicle. By design this naturally tends to miss the very stiff parts of the
side of a vehicle such as the wheels and suspension. Since a considerable proportion
of collisions actually do involve an impact over these areas, then it is reasonable to
seek to quantify the effect. One way of performing this adjustment would be to vary the
stiffness coefficients for those parts of the crush profile which include the wheels.
Neptune [81] demonstrated a method designed to approximate more accurately the
overall crush sustained by the two vehicles involved in a collision. This was achieved
by adjusting the stiffness coefficients in each individual crush zone so that the force
acting on each zone was matched to the corresponding zone on the other vehicle.
Prasad [91] used a similar technique to develop a method for estimating the work done

in causing crush where one vehicle was not available for measurement.

From Newton’s Third Law, the impulse acting on each vehicle should be of
approximately the same magnitude. This suggests that the technique proposed by
Neptune [81] could be extended to refine the stiffness coefficients for either or both
vehicles in a collision. This technique was applied by Long [60], Grimes et al. [38] and
Chen et al. [19]. All noted an improvement in the accuracy of calculated results

compared with change in velocity data.

Neptune [82] recognised that vehicles are not homogeneous structures and
investigated the possibility of determining different sets of stiffness coefficients for
impacts which did not involve full-overlap collisions. For frontal impacts he concluded
that provided damage was contained within the engine compartment, partial overlap
stiffness coefficients were the same as full-frontal stiffness coefficients. Where the

crush extended into the passenger compartment, the he noted that a bi-linear model
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was more appropriate (Neptune [76]). This is effectively the same conclusion as
reached by Varat et al. [121].

It is also noted that vehicle design has changed over the years. This has resulted in
more modern vehicles being stiffer than their older counterparts. Considerable
research has been devoted into determining the most appropriate stiffness coefficients
to use for more modern vehicles. Where possible it is suggested that the most
appropriate coefficients are used depending on the age of the vehicle. Ideally vehicle
specific coefficients should be used and can be calculated from crash tests as
described earlier. Alternatively generic coefficients based on the work of Siddal & Day
[98] or Hague [39] can be used. A discussion of the overall accuracy due to the

potential accuracy of stiffness coefficients is developed in Chapter 5.

3.6 Summary

This Chapter has summarised the measurement of damage profiles. Measurement
protocols developed over the last few decades in the UK but not covered in the original
US training manuals provide a realistic and systematic method for recording most types
of damage. The essential differences between the measuring protocols applied in the
US and UK have been outlined.

In the next Chapter the validity of an energy adjustment factor is discussed. It is shown
that the commonly used factor does not provide an adjustment which is supported by
the energy loss calculated by either Brach’s PIM or Ishikawa’s models. An alternative
adjustment factor is proposed which does provide equivalence between the various

models.
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Chapter 4

Calculation of Total Crush Energy

4.1 Obijectives

In this Chapter the key features required to determine the total energy absorbed by the
crush damage are examined. This can be achieved through the use of energy
adjustment factors which transform the crush damage measurements normal to the
undamaged surface into data which account for the direction of the PDOF. These data
then provide an estimate of the actual energy. Note that the energy adjustment factors
described in this thesis are variously known as ‘correction factors’ or ‘magnification
factors’ in other texts. Existing adjustment factors are discussed and a new factor is
derived which incorporates several new key features namely, the directions of the
impulse and closing speed together with coefficients of restitution. This new factor has
the advantage of matching the calculated factor using either of Brach’s or Ishikawa’s

methods in simple scenarios.

4.2 Introduction

As outlined earlier, stiffness coefficients are generally derived from test collisions. In
essence the assumption is made that residual crush increases linearly with increasing
speed. Where impacts occur so that the impulse acts perpendicularly to the face of the
vehicle, then these coefficients can be utilised directly to determine the crush energy.
Measurement techniques as described in the previous Chapter are designed to

measure the crush sustained perpendicularly to the face of a vehicle. As a result all
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that can be determined directly is therefore the magnitude of the work done in causing

crush perpendicularly to the face of the vehicle.

In collisions where the impulse acts at some angle («) to the vehicle surface an
adjustment factor is required to adjust the value for the work done and relate it to the
total work done in the collision. The way in which a is defined is illustrated below in
Figure 4.1 for an impact to the front face of a vehicle. Corresponding definitions for a
can also be derived for the other faces of a vehicle.

Figure 4.1: Direction of impulse (PDOF) and angle to vehicle face
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A variety of adjustment factors have been proposed to determine the total crush energy

from the normal crush energy. The original adjustment factor was proposed by
McHenry [65] to be

E=E,(+tan’ @) (4.1)

where E is the actual crush energy and E,, is the crush energy perpendicular to the
vehicle face obtained directly from crush measurements and stiffness coefficients.

More recently McHenry [66] suggested an alternative adjustment factor

E=E,(1+x tana) (4.2)
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where L, is defined as a coefficient of friction at the vehicle to vehicle interface and is
constrained so that 0.40 < y, < 0.55. Fonda [31] explains however that this particular
adjustment factor does not follow from physical principles and instead proposes the
simple adjustment factor

E=E,(l/cosqa). (4.3)

In 2009 Vangi [119] proposed another adjustment factor which requires an additional
series of measurements to determine an estimate of the principal direction of
deformation (PDOD). The PDOD is a measure of the force direction for each crush

zone. This is applied to each crush zone to determine an energy adjustment factor
E =E, [1+tan(e) tan(PDOD)] . (4.4)

This method appears to offer a significant improvement in estimating total crush
energy. As outlined in a letter to the editor Brach [5] suggests that this improvement
may simply be as a result of the improved estimation of the PDOF which results from
the application of this technique. Equation (4.1) remains the standard adjustment factor
used by the majority of CRASH derivative programs and is discussed in more detail in

the next section.

4.3 Standard energy adjustment factor

The energy adjustment factor described by McHenry [65] and shown in equation (4.1)

can be determined from an analysis of the impulse and the direction that impulse

makes with the face of the vehicle being measured as shown in Figure 4.1. Crush

measurements C,, can be made perpendicular to the vehicle face, i.e. parallel to P,

from which the force F, can be calculated. McHenry states that the actual force and

actual crush can then be given by the expressions
F C,

F=—", C-= .
COSox COSx

(4.5)

Since work done is calculated as the dot product of force and displacement, McHenry

suggests that the total energy can be calculated as
E,=F, -C,
F E 4.6
E=F.C=—"—. G _ 1 =E, (l+tan’ @) (4.6)
COSax COSax COS”

48



4. Calculation of Total Crush Energy Jon Neades

Brach [9], [11], [13], [10], claims that McHenry’s approach effectively treats energy as a
vector quantity. Force and displacement are vectors which in principle can be
transformed in this way for non-normal forces to calculate energy so this model does
not appear to treat energy as a vector. However McHenry’s approach does make the
implicit assumption that vehicle stiffness coefficients are isotropic as identified by
Tanny [116] and Vangi [119]. There does not appear to be any practical reason upon
which to base this assumption and vehicles may well exhibit different deformation
behaviour when subject to impulses with an additional tangential component to the
original vehicle face.

There is also a subsidiary problem as this energy adjustment factor is unbounded in
this model. At large angles of incidence the adjustment factor increases substantially.
In order to compensate for this, the maximum value that this adjustment factor takes is
limited to a value of 2.0 This is achieved at an angle of incidence of 45°. McHenry [65]
suggests that the reason for this limitation is that ‘the tangential frictional force
component cannot grow larger than the normal force.” Whether this claim is justified is
not considered but is does provide a useful way of constraining the energy adjustment
factor. In the next section an analysis is presented which outlines the principles

governing the estimation of energy loss in a collision.

4.4 Energy loss in vehicle collisions

Although energy loss is a not a vector quantity, it is helpful to determine the work done
by an impulse in two orthonormal directions. This is the approach adopted by Brach
[9], [11], [13], [10]. A useful result first noted by Kelvin and Tait [53] and expanded by
Stronge [113] enables the total work in a collision to be partitioned into normal and
tangential terms. Using the subscript i for each term, their results states that the partial
work (W;) done on colliding bodies by the component of the reaction impulse (P))
equals the scalar product of this component and half the sum of the initial (U;) and final
(V) velocities of the contact point in the direction of this impulse component i.e.

w :%(ui V). (4.7)
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The total work is equal to the sum of the of the work done by individual terms. In a
planar collision therefore the total work done can be expressed as the sum of the
normal and tangential contributions so that

W =W, +W,. (4.8)

The impulse is equal in magnitude and opposite in direction for each vehicle giving rise
to separate expressions for equation (4.7). As demonstrated by Vangi [119], relative
velocity components of the contact point can be used in equation (4.7). Equation (4.7)
can then be substituted into equation (4.8) to provide the more useful equation

W = %[(UZn _Uln) + (V2n Vi )]+ %[(U 2t _Ult) + (VZI —Vu )] (4.9)

In the absence of external forces, the work done by the impulse W is assumed to be
the same as the loss in kinetic energy E. Together with the definitions of e, and e, as
defined earlier in equation (2.14) and Ug,, Ury, Vrn, and Vg as defined in equation
(2.15) this allows the total work done in a collision to be expressed as

E _ PnLZJRn (1_en)+ PtL;Rt (1_91)- (410)

A ratio W, relating the work performed by the normal and tangential impulse
components can also be derived using the earlier definitions of p, which is the ratio of
the tangential and normal components of the impulse [equation (2.7)], and r, which is
the ratio of the tangential and normal closing velocity components [equation (2.12)] so
that

W d-e)
W, = = o) (4.11)

It follows from equation (4.11) that the total energy lost as a result of the collision can

be found from

_ (1_et)
E—E{Mﬂﬁa_%J. (4.12)

Equation (4.12) is of central importance to this analysis. It shows that the total work

done by the impulse is equivalent to the work done by the normal impulse component
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multiplied by an adjustment factor. This adjustment factor consists of the product of the
tangent of the impulse ratio, the tangent of the ratio of the closing speed and the ratio
formed by (1-e)/(1-e,). Note that equation (4.12) remains valid for all orientations of
the axis system and the parameters p and r change depending upon that orientation.
In this analysis however the orientation with respect to each of the individual vehicle
faces is required to determine the values of the parameters p and r. For an individual
vehicle, the value of p can be defined as the tangent of the angle that the impulse
makes with the face of the vehicle (i.e. angle « as defined earlier). A value for r can be
defined similarly as the tangent of the angle (8) that the closing speed vector makes
with the face of the vehicle. The parameter r is defined by the impact configuration and
can be expressed in terms of the restitution coefficients e, and e, together with A, B, C

and p by solving equation (2.45) to give

_(+e)[B-(1+C)]
(L+e)(uB-A)

(4.13)

The value of the angle 8 may be difficult to quantify. It is noted however that « and 8
are angles which will have a fixed orientation for any particular collision. It follows that
there will be a difference between them (angle ¢) which will remain constant for any
orientation of the impact plane. The value of { can therefore be calculated from any
arbitrary orientation of the impact plane from the values of p and r obtained for that

particular orientation such that
& =tan™ () —tan"'(r) . (4.14)
With the substitution of tan(a) for u and ¢, equation (4.12) can then be expressed as

E=E, {1+ tan(a) tan(a - &) M} (4.15)

(1_en)

Since equation (4.15) does not explicitly contain r it should be easier to use in practical
situations. The manner in which the adjustment factor described in equations (4.12) or

(4.15) can be applied to actual vehicle collisions is discussed in subsequent sections.
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4.5 Application to actual collisions

451 Common post-impact velocity scenarios

To determine how equation (4.15) can be used to establish the total energy in practical
situations, it is helpful to consider collisions where there is a common post-impact
velocity in both the normal and tangential directions before considering more general
scenarios. All the existing adjustment factors implicitly make the assumption and do
not deal with the more general case. Where there is a common post-impact velocity, e,

= ¢, = 0 so that equation (4.15) can be simplified to become
E = E, [1+tan(e) tan(a - ¢)]. (4.16)

Note that if { is zero then equation (4.16) reduces to equation (4.1). To further simplify
this discussion an example collision is chosen such that the measured faces of the
vehicles are parallel. A suitable collision for these purposes is RICSAC test 9 as
described in Smith and Noga [109]. The impact configuration and angles are illustrated
in Figure 4.2

Figure 4.2: RICSAC 9 impact configuration

Impact
plane

52



4. Calculation of Total Crush Energy Jon Neades

In this collision both vehicles were reported to have been travelling at the same speed
at impact and collided at 90°. There was no pre-impact rotation hence the angle that
the closing speed vector makes with the vehicle face is 45° for both vehicles. The
impact and configuration and vehicle parameters define the values of A, B and C used
in each of the models and, assuming a common post-impact velocity, the impulse and
therefore the PDOF is found [using equation (2.45) or equation (2.11)] to be at an angle
of 31.7¢° to the front of vehicle 1.

As previously discussed, Brach [13] identified that the orientation of the impact plane is
immaterial whenever there is a common post-impact velocity. This means that in such
collisions the impact plane can in principle be rotated so that it is aligned to either of the
measured faces of the vehicle. In this collision the impact plane can be rotated so that
it is parallel to the front of V1 and right hand side of V2 as shown in Figure 4.2. Once
aligned the normal and tangential energy values can be calculated using either Brach’s
PIM or Ishikawa’s PIM models and compared with the energy values calculated using
the method proposed here. This provides a useful check on the correspondence of this

method to the results of Brach or Ishikawa’s models.

In this collision CRASH measurements and generic stiffness coefficients suggest that
the work done in causing crush normal to the respective vehicle faces was 28436 J for
vehicle 1 and 7867 J for vehicle 2. With the values for a and B for this impact
configuration the adjustment factor is the same for each vehicle i.e. 1.6174 giving a
total amount of work done in causing crush of 58716 J. This suggests a pre-impact
speed of about 10.68 ms™ for each vehicle. This overestimates the measured pre-
impact speed of each vehicle of 9.43 ms™ but matches well with the experimental
energy loss of 56066 J reported for this collision by Brach [6]. More importantly the
normal and tangential crush energies calculated using this adjustment factor are
identical to the normal and tangential crush energies calculated by either Brach's or

Ishikawa’s models.

Also of interest is that with the recorded pre-impact speeds, the momentum only based
models of Brach and Ishikawa indicate a total energy loss of 45796 J with a normal
component of 28314 J. Since this figure is somewhat less than that calculated
previously, this suggests that the normal crush energies calculated by CRASH using
the generic stiffness coefficients may be overestimated in this case. Assuming that
28314 J is the correct value for the normal crush energy, a comparison between the

various energy adjustment factors for this collision are shown in Table 4.1
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Table 4.1: Comparison between various energy adjustment factors

Method Factor Tangential (J) Total (J)
Brach N/A 17482 45796
1+tan(a)tan(B) 1.6174 17482 45796
1+tan®(a) 1.3811 10790 39104
1+p, tan(a) p, = 0.45 1.2778 7866 36180
1+p, tan(a) pw, = 0.55 1.3396 9615 37929
1/cos(a) 1.1752 4961 33275

This comparison shows that for this particular collision the adjustment factor presented
here is larger than the other adjustment factors. (Note: The adjustment factor
proposed by Vangi [119] has not been considered as insufficient information exists to
calculate the values of the principal direction of deformation (PDOD) for each of the

crush zones.)

It is helpful to examine the effect of the adjustment factors with differing values of a and
B for a collision. For any collision the angle 8 depends on the relative speeds of the
vehicles. In RICSAC 9 both vehicles were moving forwards at impact. The angle 8
can in theory range between 0° indicating that vehicle 2 was stationary at impact and
approach 90° indicating that V1 was almost stationary. Note that V1 cannot actually be
stationary at impact otherwise no crush in the normal direction can be sustained.
Values outside this range imply a negative velocity for one or other of the vehicles

which can be discounted for this collision.

Assuming that the damage sustained and point of application of the impulse remain
constant, the direction of the impulse (and therefore a) can be calculated from equation
(2.45). Figure 4.3 shows how a varies with different values of 8 assuming a common

post-impact velocity
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Figure 4.3: Graph to show variation in awith 8
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For this collision the difference between the two values is about -6.7° when S is zero

and increases to about 11.6° when $ is 90°. Using the values for a derived by these

calculations a graphical comparison can be made between the various energy

adjustment factors as shown in Figure 4.4

Figure 4.4: Comparison of adjustment factors
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4.5.2 Tangential slip

Although the adjustment factor proposed here is lower than the standard adjustment
factor for angles of 8 up to about 15° in this collision, above this value the adjustment
factor increases more rapidly. This will of course be true whenever 8 is greater than a
provided there is a common post-impact velocity. At high angles of incidence however
there in an increased likelihood that the relative tangential velocities will not reach a
common value along the contact plane resulting in slip. Any such slip will be
manifested in a value for e, such that -1 < e, < 0. Tangential slip along the contact
plane also affects the value for u and as a consequence the value of a as shown in

equation (2.45) which is reproduced below

_ (l+e)rA+B(l+e,)
A= dre)1+C)+rBL+e)

(4.17)

Since r = tan(B) and W = tan(a) the relationship between e, and a can be established
from this equation for a particular value of 8. The graph in Figure 4.5 shows such
relationships for the RICSAC 9 collision with various values of 3.

Figure 4.5: Graph showing relationship between a and e,
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As shown in Figure 4.4 the energy adjustment factor suggested by equation (4.12)

appears to be unbounded. This is only true in the theoretical case where a common
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post-impact velocity is assumed. In practice the energy adjustment factor is effectively
bounded by the onset of tangential slip which reduces the angle a and alters the ratio
(1-e)/(1-e,). The overall effect of tangential slip on the adjustment factor is illustrated
in Figure 4.6

Figure 4.6: Graph showing overall effect of e;on the new adjustment factor
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4.5.3 Collisions with stationary vehicles and barriers

It is noted that when one vehicle is stationary and in the absence of sideslip, the
closing speed vector 8 will be zero. (Sideslip in this context is defined as the angle
between the direction in which the vehicle is travelling and the direction in which it is
heading.) This implies that the energy adjustment factor defined by equation (4.15) will
also be zero. Suitable data with which to test this hypothesis for car to barrier collisions
does not appear to exist at a sufficiently high level of precision. Since there is
generally little difference between a and S any differences between the various energy
adjustment factors are also likely to be small. In frontal barrier impacts this is
particularly relevant since a is likely to be close to zero for such collisions. However
the process for comparing results can be illustrated using the Ford Escort repeated
crash tests in the NHTSA database [83] and analysed by Kerkhoff et al. [54]. Using
these test collisions it is noted that for the first four tests the speed / crush response is

linear as shown in Figure 4.7
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Figure 4.7: Speed / Crush graph for US Ford Escorts
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From these tests the intercept with the y-axis is 3.09 ms™. This data produces the

following stiffness coefficients A = 611.3 N/cm and B = 46.2 N/cm?. A suitable angled
barrier test (Test No. 353) was found in the NHTSA database involving a US Ford

Escort. In this test, the Ford Escort was guided into impact with a rigid barrier angled

at 30° to the direction of travel.

Using the stiffness coefficients calculated above the

recorded crush measurements indicate a normal crush energy of 110.6 kJ. In this

collision a small PDOF can be expected due to the impact configuration. The impact

configuration and PDOF are shown in Figure 4.8

Figure 4.8: Impact configuration for NHTSA test 353
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From Brach’s PIM model a PDOF value of -6.8° is calculated together with a pre-
impact speed for the Escort of 13.86 ms™. This underestimates the actual pre-impact
speed of 15.70 ms™ by 12%. It is apparent however that the recorded damage profile
does not match the damage profile as shown in photographs of the vehicle post-
impact. The photographs show that damage extends across the entire front of the
vehicle. It seems likely that the investigators recording this collision only recorded the
direct contact damage and did not record the induced damage. If such information
were available it would increase the area of damage thereby increasing the total
energy and increasing the calculated impact speed.

A series of angled barrier tests involving the repeated testing of a Ford Escort were
also found, tests 1633, 1634 and 1635 refer. These tests comprised of a rigid mobile
barrier (mass 1235 kg) colliding with the front left corner of the Escort at an angle of
21°. The results from the first test (No. 1633) show that the work done in causing crush
normal to the front of the Escort was 13312 J. This indicates an initial speed for the
barrier of about 6.63 ms™ which overestimates the actual impact speed of 6.36 ms™ by
4%. In this collision the relative closing speed lies along an angle of 21° to the front
face of the Escort so 8 is not zero. Applying the energy adjustment factor in equation
(4.12) or (4.15) adds an additional 1445 J increasing the calculated pre-impact speed

to 6.98 ms™ which represents an overestimate of nearly 10%.

The second test (No. 1634) showed that the work done in causing crush was 46065 J
with a calculated initial speed for the barrier of 12.33 ms™ (13.00 ms™ after energy
adjustment) The recorded initial speed was 12.57 ms™ suggesting a close match.
However these were a series of cumulative crash tests. As shown by Prasad [90] the

total work done in causing crush using repeated crash tests is

£ = 3mi.
E, =imv +imv, (4.18)

E,=imv/ +imv;+imv..

Equation (4.18) indicates that the equivalent impact speed for test 1634 was 14.08 ms™
thus the calculated value of 13.00 ms™ underestimates the equivalent impact speed by
about 7%. Vehicle crush measurements are not recorded for test 1635 so this test is
unsuitable for analysis. The spread of these results from this limited series of tests
does not indicate whether or not the energy adjustment factor given in equation (4.12)

or (4.15) is a suitable adjustment factor for real-world collisions.
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Vangi [119] also recognised the paucity of suitable data and as an alternative used a
finite element model (LS-DYNA) in order to generate validation data. This series of
tests involved simulations of crash tests with rigid barriers at a range of values from 10°
to 50°. Vangi [119] did not report the PDOF or the pre-corrected energy values used.
Vangi [120] has subsequently provided the pre-corrected energy values he calculated

for this series of simulations. These are shown in Figure 4.9 and Figure 4.10

Figure 4.9: 20 km/h simulations (Vangi 2009)
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Figure 4.10: 40 km/h simulations (Vangi 2009)
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Vangi has not published the damage profiles sustained in his series of simulations.
However, in a series of angled barrier tests, increasing the angle of incidence will
produce increasing damage to the corner of the vehicle which is struck in the same
manner as shown in Figure 4.8. This has the effect of moving the point of application
of the impulse towards the struck corner. In turn this increases the total increase in
rotation which can be expected as a result of the collision. It follows that although the
initial kinetic energy may be the same in each collision, as consequent on using the
same vehicle at the same speed, less damage will be sustained with increasing angles
of incidence since some of that kinetic energy will be transferred into kinetic energy of
rotation.

The results of simulations from Brach’s model at 40 km/h with increasing movement of

the point of application away from the centre of the vehicle are shown in Figure 4.11

Figure 4.11: 40 km/h simulations using Brach's PIM
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Vangi’s results do appear to demonstrate this effect. However the data available is
insufficient to determine the point of application of the impulse accurately for each of
Vangi's simulated collisions so a direct comparison is not possible. Further work on
this aspect will therefore be required in order to establish whether or not the zero
adjustment factor indicated by equation (4.12) is valid in collisions with stationary
objects. It is suggested that a series of barrier tests at a variety of known slip angles

may assist in resolving this issue.
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45.4 Other impact configurations

The examples used thus far have considered only collisions where an impact plane can
be defined such that the values of a and 8 are common to both vehicles. In such
collisions it has been shown that the adjustment factor defined by equation (4.12)
provides energy adjustment factors and total energy loss which match those predicted
using Brach’s and Ishikawa’s models. Neither of these models can be used to estimate
the energy dissipated by each vehicle due to the component of the impulse in a

particular direction; they merely provide the total loss in any particular direction.

In collisions where a and B are different for each vehicle a different adjustment factor
will apply to each vehicle and neither of the momentum based models can be utilised to
provide comparison data. Figure 4.12 shows a generalised collision where the impact

angle (¥) is defined as the angle between the vehicles.

Figure 4.12: Generalised impact configuration

In a similar manner to the way in which the two PDOF values are related by equation

(3.5), the values of a and  for each vehicle can be found from

=¥+, +a,, (4.19)

T=¥Y+p+p,. (4.20)
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One the corrected energy value is computed it can be entered into the CRASH
equation to determine the total change in speed for each vehicle. This equation,
described in Chapter 2 is repeated below

Av, = \/ 2m,(E, +E,)(1+e,) 4.2

m (M, +m,8,)(1—e,)

As explained in Chapter 2, the Av obtained from equation (4.21) is the total change in
velocity along the line of application of the impulse P. It is apparent from equation
(4.21) that although changing the values of E; and E, in this equation will affect the
magnitude of Av, altering these values has no effect on the values of §; or §,. These

are defined solely by the yaw moments of inertia and the lengths of the moment arms.

Changing the values of the work done in causing crush to each vehicle makes no
difference therefore to the relative magnitudes of their closing or separation velocities.
Although their absolute magnitudes will change, the directions of the velocity vectors
do not. It follows that once the pre and post-impact velocity directions are defined, it is
only their magnitudes which will be determined by altering the total energy work done
by using any adjustment factor. What does have an effect however is restitution. In
the next section the effects of restitution coefficients and how they can be related to

collisions are discussed in more detail.

4.6 Restitution effects

The energy adjustment factor given in equations (4.12) and (4.15) is the product of
three factors. The closing speed and impulse angles (a and B respectively) are
multiplied by the third factor, consisting of the ratio (1-e,)/(1-e,). The discussion so far
has only considered collisions where a common post-impact velocity could be assumed
so that this ratio could be ignored. The effect of a non-zero tangential coefficient of
restitution e, was also mentioned to show that it provides a constraint on the otherwise
unbounded behaviour of the overall factor. In this section the nature of restitution

coefficients are discussed along with their effect on the adjustment factor as a whole.

As shown previously, the calculation of work done in causing crush damage is related
to both the impulse and the closing speed. It is helpful first to determine how these

parameters can be related to each other. In Brach’s PIM model [11] the impulse
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components normal and tangential to an impact plane can be calculated from the

equations
m(1
P = M+e,)Ug, ’ (4.22)
A—uB
m(l+e )U
p = P, = M+ & en (4.23)
A—uB
Substitution of equations (4.22) and (4.23) into equation (4.10) produces
~~ (1 __ a2 2 = _
— m(l en)URn + lum(1+en)(1 et)URnURt (424)

2(A— uB) 2(A— uB)
or alternatively

E_ m(l—e,f)U,in N ﬂm(l_etz)uri _ (4.25)
2(A-uB)  2fu(l+C)-B]

Note that in both equations (4.24) and (4.25) the first term corresponds to the energy
loss from the component of the impulse normal to the impact plane and the second
term to the loss of energy from the component of the impulse tangential to the impact

plane.

The magnitude of the total impulse P can be derived from equations (4.22) and (4.23).
Substitution of equation (4.10) and the definition of r as defined in equation (2.12) leads

to an expression relating the total energy loss to the impulse

— 2
p:J 2EM(L+e, )1+ 12 (4.26)

(A= uB)[1—e, + ur(l—e)]

Equation (4.26) is effectively the same as equation (2.46) derived by Brach [9].
However in equation (2.46) Brach uses an additional term p, which he defines so that
Hc is just sufficient to halt relative tangential motion during the impact. Brach defines

the term . in terms of the relative closing speed r and e; as
u.=rl1+e). (4.27)

Equation (4.26) provides a description of the magnitude of the total impulse in terms of

the energy lost through causing crush damage. A similar expression can also be
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derived using Ishikawa’s impulse components. As shown in Chapter 2, equation (4.26)
is equivalent to the CRASH equation [equation (2.51)] whenever p is zero. A zero
value for | occurs when the impact plane required in Brach and Ishikawa’s models is
rotated so that the plane is perpendicular to the impulse thereby eliminating any

tangential impulse component.

A potential problem in determining coefficients of restitution is that they are effectively
defined in Brach’s and Ishikawa’s models relative to an impact plane. In Ishikawa’s
model a separate tangential coefficient of restitution is explicitly defined, whereas in
Brach’s model the tangential coefficient is implicitly defined through the coefficient po.
As already discussed, these models are generally utilised by defining a suitable impact
plane and adjusting the pre-impact velocities and coefficients with that impact plane to
produce some desired output scenario. Once the coefficients and pre-impact velocities
are set, any rotation of the impact plane necessarily requires different values for the

coefficients to maintain the same output scenario.

The energy adjustment factor defined by equation (4.12) or (4.15) requires however the
effective coefficients of restitution normal and tangential to the face of the vehicle under
investigation. The problem is that in order to determine these coefficients relative to
the face of each vehicle, the impact plane must be rotated for each vehicle so that it is
perpendicular to the original face of the vehicle. This is illustrated in Figure 4.13 where
a collision is depicted together with the arrows showing the desired paths of the centres

of mass.
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Figure 4.13: Impact configuration and desired output
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The solution to this problem requires that some method of transforming the coefficients
from one orientation of the impact plane to another must be derived. As discussed in
Chapter 3, Brach [11], [13] suggests that a nominal impact plane for a collision is one
that is orientated so that it bisects the angle between the two vehicles at impact.
Ishikawa [42] suggests that the impact plane should be parallel to the common
damaged surface between the two vehicles. It is contended however that orientating
the impact plane perpendicular to the impulse approximately satisfies both Brach’s and
Ishikawa’s suggestions as is shown in Figure 4.13. Orientating the impact plane so
that it is perpendicular to the impulse also eliminates the tangential impulse
component. As a secondary benefit, this orientation ensures that any coefficient of
restitution normal to the impulse is common to not only the momentum models of Brach
and Ishikawa but also to CRASH. This facilitates direct comparison between the

various models since with this particular orientation e, = e,

To simplify this discussion, it is assumed further that relative motion tangential to the
impulse ceases at some stage during the collision so that e, = 0. In reality, this

additional assumption is also likely to be true in practice, unless the collision is a
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sideswipe. Brach [10] notes for example that in all the RICSAC series of tests relative
tangential motion did cease during impact. Furthermore, Brach [11], [13] recommends
that a common tangential post-impact velocity should be assumed ‘unless the physical
evidence strongly indicates otherwise’. In Brach’s model a common tangential velocity
is assured when p = py With the impact plane orientated so that it is perpendicular to
the impulse L= o = 0.

Some work has been done to determine ranges for [normal] coefficients of restitution
likely in vehicle to vehicle collisions and a comprehensive analysis using the NHTSA
crash tests [83] is provided by Monson and Germane [71]. They conclude that the
closing speed is highly influential in determining the magnitude of restitution. Their
results show a spread of coefficients from 0 to about 0.3 which generally decrease with
increasing closing speed. They note however that sufficient data to establish firm
results only exists for full frontal vehicle to barrier collisions. Their results for vehicle to
vehicle impacts, angled impacts, side impacts and rear impacts are less conclusive.
These results broadly mirror earlier studies by Prasad [87], Ishikawa [43], [42] and
Kerkhoff et al. [54].

It is arguable whether the normal coefficient of restitution e, determined from empirical
data should be applicable in a direction normal to the original face of a vehicle or along
the line of action of the impulse. The method developed here however allows
conversion of coefficients to and from any orientation of the impact plane. Equation
(4.17) can be written

(d+e,)[u1+C)-B]

1+e)= ‘(A—uB) : (4.28)
so that
(1_et)=2_(1+en)[/u(1+c)_B] . (429)

r(A— uB)

Equation (4.29) can then be substituted into equation (4.26) to eliminate e; and then

solved for e, to yield

o _[RU+2ur)-S-T]
" R+S+T

: (4.30)

where
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R=A-uB,

S=u*(1+C)-uB, (4.31)
2EMm

T= 52 (L+ ).

For any collision once E, the total values for the work done in causing crush and P, the
total impulse, are established for one particular orientation of the impact plane, then
these totals must apply to every orientation of the impact plane. As the impact plane is
rotated about the impulse, the value of u also changes as the proportion of normal and
tangential components varies. Equation (4.30) can then be utilised to find the value of
e, for any other orientation. Once e, has been found, the tangential coefficient of

restitution e, can be found with either of equations (4.28) or (4.26).

To demonstrate the effects of this technique, the source data from RICSAC 9 is used.
In this test collision two vehicles collided at 90° as shown in Figure 4.2 For this
illustration, when the impact plane is orientated perpendicular to the impulse a nominal
value e, = 0.3 is assumed. In this orientation a tangential coefficient of restitution e, =0
is also assumed. Figure 4.14 shows the variation of p with different orientations of the

impact plane about the impulse.

Figure 4.14: Variation in yu compared with angle of I from impulse
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Note: Although it may be expected that the value of p should lie between -1 and +1, it
can be seen from Figure 4.14 that once the impact plane lies outside the range -45° to
45° from the direction of the impulse then the value of p is not so bounded. Outside this
range the magnitude of the tangential impulse component is greater than the
magnitude of the normal impulse component which produces a value for p greater than
unity.

A zero value for p is obtained when [ is orientated perpendicular to the impulse. In this
example this occurs at an angle of about 29.5° from the face of the vehicles. With the
further assumption that the vehicles were travelling at their measured speed of 9.43
ms™ the total work done in causing crush is calculated to be 41573 J and the total
impulse was about 9243 kg ms™. From equations (4.30) and (4.28) the relationship
between the two coefficients of restitution and the angle of I from the impulse is as
shown in Figure 4.15

Figure 4.15: Graph to show e, and e, compared with angle of I from impulse
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For any particular orientation of the impact plane, Figure 4.15 shows the corresponding
values for the coefficients of restitution required to maintain the same total work done
(E) and total impulse (P). In order to maintain the same total work done and total
impulse, it can be seen that the coefficients tend towards asymptotes corresponding to

orientations of the impact plane normal and parallel to closing speed vector r.
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In this example nominal values of e, = 0.3 and e; = 0 were assumed with the impact
plane orientated perpendicular to the impulse. The same technique [using equations
(4.30) and (4.28)] can also be used if the values for e, and e; are known at some other
orientation of the impact plane. For example, Brach [6] reports that for RICSAC test 9
he determined a normal coefficient of restitution e, = 0.4 with an impulse ratio p of
0.486 and that there was a common post-impact velocity tangential to the impact plane,
i.e. e, = 0. This impulse ratio corresponds to an impact plane aligned with the faces of
the vehicles as shown in Figure 4.2 From this data the impulse is about 25.9° from the
faces of the vehicles. Calculation shows that the effective coefficients when the impact
plane is orientated to the impulse are e, = 0.27 and e, = -0.38 A graph to show the

values of coefficients at other orientations of the impact plane is shown in Figure 4.16

Figure 4.16: Graph to show e, and e; with e, = 0.4 when I’ =-25.9
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Note that since a common pre-impact speed is assumed as before together with no
change to the other data, the graph in Figure 4.16 shows asymptotes in the same
location as in Figure 4.15. The points where the coefficients intersect the x-axis
however are displaced to the left by 25.9°. Again this shows that with arbitrary
orientation of the impact plane, equations (4.30) and (4.28) can be used to determine

the exact coefficients of restitution required.

70



4. Calculation of Total Crush Energy Jon Neades

4.7 Summary

In this Chapter a new method was derived to determine the energy adjustment factor
applicable to each vehicle in a particular collision. It incorporates the key features
which can affect adjustment factors, the direction of the impulse, the direction of the
closing speed and restitution in both the normal and tangential directions. This method
also has the advantage of matching the calculated factor using either of Brach’s or
Ishikawa’s methods. In some scenarios this method provided results which correspond
to practical solutions. However further work is required to determine whether this new

method can be used to model all real life collisions.

The new energy adjustment factor described in this Chapter has the disadvantage of
requiring knowledge about the direction of the closing velocity of the two vehicles. This
appears to preclude its utility in scenarios where there is no scene data from which to
determine the angle between the vehicles’ closing speeds. However a technique is
developed in Chapter 7 which addresses this shortcoming. In that Chapter it is shown
how the pre- and post-impact velocities may be determined for the majority of vehicle
to vehicle collisions from an analysis of their changes in velocity. As outlined above,
once the direction of the closing velocity vector is established, the adjustment factor
only affects the magnitude of the two values for crush energy. This suggests a two
stage process, the first stage using arbitrary values for E; and E, simply to establish
the angle of the closing velocity vector and a second stage where the adjusted values
for E; and E, are used to determine the magnitude of the respective vehicles’

velocities.

An analysis of the potential accuracy of this new energy adjustment factor is described
in Chapter 7 once a technique is available from which to determine the closing speed
angle. Before describing the development of that new technique however, the next

Chapters examine and discuss the potential accuracy of the CRASH model.
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Chapter 5

Accuracy of the CRASH Model

5.1 Objectives

In this Chapter the potential accuracy of the various impact models is examined and
compared with previously published work. Major sources of error are identified and
their likely magnitudes are estimated to provide an estimate of the overall accuracy
which can be expected from the impact models.

5.2 Introduction

Three impact models are considered in detail by this thesis, the planar impact
mechanics model by Brach [11], a similar model by Ishikawa [43] and the CRASH
model described by McHenry [65]. As shown previously Brach’s and Ishikawa’s
models are equivalent and produce identical results with identical input data. The
CRASH model can also produce identical results provided the impact plane required in
the Brach and Ishikawa models is orientated so that it is perpendicular to the impulse

as demonstrated in Chapter 2.

The models by Brach and Ishikawa are essentially forward iteration models and require
an estimate of the initial velocities in order to determine the post impact velocities and
Av as the output. CRASH provides Av directly as an output from an estimate of the
work done in causing crush to each vehicle. Provided that a realistic estimate of the
work done in causing crush (crush energy) is available, then a reasonable estimate of

Av can be obtained. The estimate of work done in causing crush can be obtained after
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the event using techniques developed in Chapter 3 and Chapter 4. CRASH therefore
has a potential advantage over the other models in that it does not require any
knowledge of the post-impact conditions upon which to base initial estimates of the
impact speed. However, estimates of crush energy are not precise and are subject to

error.

An obvious way of calibrating all the models is to compare the output of the models
with known data. Both Brach [11], [7], [9], [10], [12], [13] and Ishikawa [43], [42], [41]
provide comparisons in their works to full scale crash tests. Brach has also performed
several comparison tests between his model and CRASH. These comparisons have
however tended mainly to highlight differences between Brach’s model and CRASH.
As shown in Chapter 4, Brach’s comparisons do not necessarily match the orientations
of the impact plane required to directly compare the results using his model with those
generated by CRASH. In particular Brach does not allow CRASH to utilise coefficients
of restitution. Without restitution a direct comparison between these models cannot be
entirely valid. Although the original formulation of CRASH does not incorporate such
coefficients, Smith [105] shows that it is possible to incorporate restitution into the
CRASH model. In this Chapter Brach’s results are re-analysed to provide a more

realistic comparison between the models.

Several others have also provided comparisons between real-world collisions and the
CRASH model in an effort to demonstrate the overall accuracy. One notable paper
concerning the accuracy of CRASH was provided in 1982 by Smith and Noga [108].
Lenard et al. [56], [57] discuss the potential accuracy of CRASH in vehicle collisions. A
similar earlier study by Jennings and Jones [48] investigated whether CRASH was
suitable for use with European vehicles. Little work has been performed however into
determining the theoretical accuracy of CRASH compared with other models. This
Chapter also provides an analysis to determine the theoretical accuracy which can be
expected from CRASH. Before describing the theoretical accuracy however, the next

section examines the results of empirical studies.

5.3 Empirical Studies

The majority of existing studies investigate the accuracy of CRASH when compared to
actual vehicle to vehicle (VTV) or vehicle to barrier (VTB) collisions. Due to the

inherent problems in determining actual Av values for real-world collisions these
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studies are all based on the results of instrumented test collisions. For convenience
these comparisons are separated into two groups. UK based studies by Jennings and
Jones [48] and Lenard et al. [56], [57] and US based studies by Smith and Noga [107]
Brach [6], Ishikawa [42] and Day and Hargens [25]. Particular attention is paid to the

well known RICSAC series of crash tests summarised by Jones and Baum [51].

5.3.1 UK Based studies

The study by Jennings and Jones [48] was designed primarily to determine whether or
not the version of CRASH in use at that time (CRASH2) was suitable for use with
European vehicles. CRASH was developed originally in the USA as an algorithm to
determine Av and the stiffness coefficients were determined solely using American
vehicles which potentially could be significantly different to European vehicles. The
accident environment was also considered to be significantly different to that in the
USA and the majority of the paper is devoted to analysing differences between the two
environments. A total of 200 cases were considered of which 100 were considered
suitable for analysis using CRASH. The remainder were mainly rejected for analysis
as they were thought to violate one or more of the CRASH assumptions listed by
McHenry [65] and described in Chapter 2.

As part of the study Jennings and Jones updated the stiffness coefficients to match
more accurately the threshold damage level for European vehicles developed from a
series of crash tests. They noted that in all but five collisions the estimated Av was
within £10 mph of the actual Av compared with 13 collisions falling outside this range
using the CRASH2 default stiffness coefficients.

The study by Lenard et al. [56] analysed 26 front and 26 side barrier tests performed
under EuroNCAP between 1996 and 1998. The Av values were determined using
CRASHS and default stiffness coefficients. They determined that without using custom
vehicle stiffness coefficients in frontal VTB collisions the Av was systematically
underestimated by about 7 kmh™ with a range of about +10 kmh™ for CRASH results.
For side impacts they concluded that CRASH underestimated by 1 kmh™ with a range
of about +5 kmh™. Of note is that in this study the energy absorbed by deformable
barriers was also analysed and incorporated into the calculations. Comparative tests
excluding the work done in causing crush to the barriers was not provided. However
the mean value for work done in causing crush to the barriers was estimated to be

about 30% in the EuroNCAP tests which were considered.
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Lenard et al. [57] update their earlier work to provide a comparison with a total of 137
test collisions involving VTV and VTB (rigid and deformable) crash tests. The results
from these test collisions are summarised in Table 5.1

Table 5.1: Statistical properties of CRASH3 results (Lenard et al. 2000)

Absolute Error (km/h) Relative Error (%)
AVcrash - Avtest (Avcrash - AVtest)/ Avtest
Impact Tvpe No. of Mean Standard Mean Standard
P yp vehicles deviation deviation
Front 91 -5 9 -9 17
Car to car 22 +2 7 +5 13
Rigid barrier 25 -10 11 -21 19
Deformaple 44 5 7 8 12
barrier
Side 44 -2 3 -9 12
Rigid barrier 5 -6 N/A -27 N/A
Deformable 39 1 > 6 9
barrier
Rear
Rigid barrier 2 -4 N/A -19 N/A
TOTAL 137 -4 8 -19 15

Lenard et al. concluded that the default stiffness coefficients in CRASH3 are sufficiently
well suited for modern European cars for statistical studies but make the point that for
individual collisions custom stiffness coefficients may be desirable. These results show
that for frontal impacts CRASH appears to underestimate Av for rigid and deformable
barrier impacts but overestimate Av in car to car impacts. In side and rear impacts
CRASH can underestimate Av significantly. They call for further research to collate
vehicle crush data from crash tests. Insufficient detail is provided to further analyse

their results.
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5.3.2 US based studies

The first comprehensive study into the accuracy of CRASH appears to be that
performed by Smith and Noga [107] in 1982 This was later summarised the same year
as an SAE paper by the same authors [108]. Staged collisions using 53 American
vehicles and 29 using European vehicles were examined using the default coefficients
in CRASH3. They determined that for low changes in velocity in the range 10 — 15
mph (16 — 24 kmh™) the mean calculated value of Av was accurate to +17.8%. For
higher changes in velocity in the range 25 — 30 mph (40 — 48 kmh™) the mean
calculated value of Av was accurate to +14%. Both these figures are for a 95% level of
confidence and weighted according to their assumed frequency of occurrence based
on the US towaway accident population.

The version of CRASH used by Smith and Noga did not have the facility to incorporate
restitution effects and in [107] they note that this may have had an adverse effect on
the results, particularly at lower speeds. Smith and Noga also utilised the standard
energy adjustment factor as described in Chapter 4. They observed that although
CRASH generally tended to underestimate the total Av, for oblique side impacts
CRASH overestimated Av. Smith and Noga attribute this to the adjustment factor.
They found that in each of these cases the angle of incidence of the impulse to the
original face of the vehicle was 45° or greater resulting in a large adjustment factor
greater or equal to 2. They suggest that the simple model describing the standard
adjustment factor may not be appropriate to higher angles of incidence.

Smith and Noga also investigated the probable Ilimits on ranges for input
(measurement) data. The ranges on the input data were estimated by comparing the
results obtained from 34 pairs of measurements. One set of measurements were
obtained by skilled team of investigators who attended the scene and the other set
were obtained by a single person with limited training who measured the vehicles after
they had been removed from the scene. For this comparison the skilled 2-person team
measurements were taken to be the ‘true’ values and the lesser skilled single person’s

results were taken to be the ‘field’ measurements.

It should be noted that although this study appears somewhat crude, it is the only such
study that appears to have been recorded. On the basis of this investigation, Smith
and Noga determined the confidence levels on individual measurements that could be

expected. Their results are shown in Table 5.2
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Table 5.2: 95% confidence levels for measurements (Smith & Noga 1982)

Standard 95% confidence
Measurement Mean error . L

deviation limits
Weight (Ibs) 24 65 +130
C;1 — C; (inches) 0.3 1.5 +3.0
Offset D (inches) -0.1 1.8 +3.6
Damage length L (inches) -0.5 3.0 +6.0
PDOF (degrees) N/A N/A +20"

The PDOF measurements are based on 10° increments

Smith and Noga’s study also examined to some extent the theoretical accuracy of the
CRASH model. For this part they used a simplified version of the CRASH equation
described in equation (2.24). Excluding restitution, equation (2.24) can be written as

(5.1)

Assuming that the parameters in this equation are independent of each other it is
possible to use standard error propagation theory to determine an approximation to
likely error in the result. A similar technique is utilised in the next section where it is
discussed in more detail. Smith and Noga made the further assumptions that six crush
measurements were obtained in each case and that the standard energy adjustment
factor was used. With these assumptions they determined that with the 95%
confidence limits shown in Table 5.2, the overall uncertainty in Av for individual
collisions resulting from measurement error was between 9 and 25%. The greatest
source of error was found to be in the estimation of the PDOF. Uncertainty in this
variable alone accounted for about 4 times as much error in the final result as the other
factors. They further calculated that a 10% uncertainty in the A and B stiffness

coefficients produced errors of approximately 2 to 5% in Av.

Woolley et al. [132] also analysed data presented by Smith and Noga using the
CRASHS coefficients. They point out that individual Av values could be in error by as
much as +40%. As a result of this and an incorrect analysis of the theory underpinning
CRASH they concluded that CRASH does not produce accurate results and instead
proposed the IMPAC model [130]. (Note: The IMPAC model is essentially a
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conservation of momentum model, similar to those described herein but with the

assumption of a common post-impact velocity i.e. e, = e;= 0)

5.3.3 RICSAC tests

In this section the data from the well known RICSAC (Research Input for Computer
Simulation of Automobile Collisions) tests series is discussed. The data has been used
for several comparative studies. More pertinently for this research the RICSAC tests
include crush measurement data for each vehicle. The RICSAC series comprises
twelve tests, each involving a collision between full size US vehicles travelling at known
speeds. The data is summarised by Jones and Baum [51] from several volumes of a
US DOT report by Shoemaker [96], [97] and Jones and Baum [52].

Data from the tests is spread over a number of publications and there are
discrepancies between the data reported in different sources, e.g. Smith and Noga
[109] and Brach [6]. In addition, the actual changes in velocity (Av) as initially reported
were found to be incorrect due to a failure to adjust the velocities to account for
accelerometer positions located remotely to the centre of mass. This has provoked
considerable discussion in the literature. These errors have since been corrected
independently by Brach and Smith [12] and McHenry and McHenry [69] with slightly
different results as shown in Table 5.3.

Table 5.3: Comparison between uncorrected and corrected Av (speeds in ms™)

RICSAC | Untransformed [51] Brach & Smith [12] | McHenry & McHenry [69]

test No. V1 V2 V1 V2 V1 V2
1 5.45 6.93 5.27 6.62 5.50 7.55
3 4.25 7.06 4.20 6.88 4.25 7.06
4 8.36 10.01 8.31 9.66 8.36 9.92
5 7.29 11.22 7.06 11.13 7.24 11.40
6 4.02 5.36 4.11 6.53 4.07 6.39
7 5.36 7.38 5.36 8.81 5.36 8.85
8 6.84 4.83 6.97 4.78 6.66 4.92
9 9.57 3.98 8.72 3.84 8.90 3.67
10 15.69 6.30 12.83 5.86 15.20 5.59
11 10.73 7.02 11.18 7.20 10.95 7.02
12 17.92 11.80 18.77 11.26 18.24 11.93
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Data from test 2 is omitted as there was a failure of the accelerometers during this test
and no data was recorded. The majority of the transformed changes in velocity are
within 5% of the untransformed values, although there are some exceptions, such as
in tests 6, 9 and 10. The differences between the two sets of corrections indicates that
the RICSAC data requires some interpretation to obtain usable results.

The Av values for a damage-only analysis of the RICSAC series of tests have been
recalculated for this research using the RICSAC sample data provided with the
EDCRASH [26] implementation of the CRASH algorithm. This is the same data set as
used by Day and Hargens [22] and [25] in their validation of the EDCRASH computer
program. The measurements used and other source data corresponds well with the
original measurements recorded by Jones and Baum [51]. The crush analysis results
obtained for the damage-only analyses are shown in Appendix E with the source data
shown in Appendix D. The results in Appendix E were generated using AiDamage
[74]. These results have been compared with results from Brach’s model as shown in
Table 5.4 and are summarised graphically in Figure 5.1 below. In this comparison the
measured Av and Brach Av PIM results are both taken from Brach and Smith [12]

using corrected accelerometer data.

Table 5.4: Comparative Av results PIM and raw CRASH (Speeds in ms™)

Corrected Speeds
RICSAC . PIM Results [12] Raw CRASH
Brach & Smith [12]
test No.
Vi V2 Vi V2 Vi V2
1 5.27 6.62 4.61 6.90 6.20 9.30
3 4.20 6.88 3.50 554 2.79 4.43
4 8.31 9.66 6.45 10.06 7.05 11.00
5 7.06 11.13 6.00 10.90 6.89 12.54
6 4.11 6.53 4.62 7.57 6.97 11.44
7 5.36 8.81 6.76 9.58 8.84 19.25
8 6.97 4.78 5.23 4.97 4.84 4.60
9 8.72 3.84 6.85 3.15 6.32 2.91
10 12.83 5.86 11.02 5.39 7.08 3.46
11 11.18 7.20 10.91 6.84 9.33 5.85
12 18.77 11.26 16.17 11.21 11.74 8.15
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Figure 5.1: Graph to show comparative Av results (Speeds in ms™)
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The results from this comparison show a much wider spread of results for the CRASH
algorithm than for Brach’s model. Brach’s model shows a mean underestimate from
the actual change in velocity of 5% with a standard deviation of 14% whereas CRASH
overestimates with a mean error of 2% with a large standard deviation of 45%.

It is helpful at this stage to discuss some of the other comparisons which have been
made with CRASH. Day and Hargens [25] also produced a table of results for their
validation of their EDCRASH program. Their results show some variation in the
calculated values of Av to those calculated here and shown in Figure 5.1, particularly in
tests 6, 9, 10 and 12 where differences of over 2 ms™ are apparent. Since the vehicle
data, crush data and stiffness coefficients used by Day and Hargens are identical to
those used in this analysis, this is somewhat surprising. Day and Hargens perform two
series of analyses, one without trajectory simulations and the other with such
simulations. (Note: The trajectory simulation model used by some implementations of
CRASH is an analysis of the post-impact motion of the vehicle to derive the post-

impact velocities of each vehicle.)

Although it is unclear from their text, it appears that their quoted results are not based
on the calculation of Av from crush damage analyses, but instead are based upon the
determination of pre-impact velocity and Av using the conservation of linear momentum
as outlined by equations (2.1) and (2.2). Day and Hargens do not appear to record the
‘Damage Only’ Av results of their EDCRASH program runs. As such, the EDCRASH
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validation performed by Day and Hargens can only be considered as a validation of the
momentum only and trajectory simulation models contained within EDCRASH. The
EDCRASH study does not validate the damage part of the CRASH algorithm.

Brach also performed earlier analyses of the RICSAC tests in 1991 [8] and 1998 [10]
which show different results for his planar impact mechanics model. The reasons for
the differences between each of Brach’s results appear to be due the optimisation
process used on each occasion and that early versions of the PIM model used a
slightly different formulation. In each it appears that the same initial velocities were
used and the e and p parameters adjusted to obtain a close match to some desired
output. For example in the 1991 series, Brach optimised the tests to minimise the
differences from the calculations to the post-impact velocities. In the 1998 series, the
optimisation process used (if any) is not specified. In the 2002 series, Brach and Smith
state that the results were optimised to match a “weighted combination of DeltaV and
energy loss”. They further state that that the best fit with this optimisation in all cases
was for the common velocity conditions i.e. e = 0 and 4 = |y A comparison between
the three analyses of the RICSAC data performed by Brach is shown in Table 5.5 and

summarised graphically in Figure 5.2

Table 5.5: Comparison between Brach's RICSAC results (Speeds in ms™)

RICSAC 1991 Results [8] 1998 Results [10] 2002 Results [12]

test No. V1 V2 V1 V2 V1 V2
1 491 7.38 4.60 6.92 4.61 6.90
3 4.30 6.83 4.27 6.77 3.50 5.54
4 6.83 10.64 6.74 10.52 6.45 10.06
5 6.25 11.37 6.22 11.49 6.00 10.90
6 4.48 7.35 4.63 7.56 4.62 757
7 6.22 8.81 6.77 9.57 6.76 9.58
8 5.88 5.61 5.58 5.30 5.23 4.97
9 9.75 4.48 8.78 4.05 6.85 3.15
10 15.73 7.68 13.96 6.83 11.02 5.39
11 11.16 6.98 10.88 6.83 10.91 6.84
12 18.07 12.62 17.77 12.31 16.17 11.21
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Figure 5.2: Graphical comparison of Brach's RICSAC results (Speeds in ms™)
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Although differences exist between Brach’s three analyses, the difference between his
calculated results and those measured from for the accelerometers are similar. There
remain discrepancies with the CRASH results which further explanation and this forms

the basis of the next section.

5.3.4 Errors in crush data measurements

Potential problems with the crush measurements in the RICSAC data are discussed in
this section together with methods which can be used to compensate for such errors.
A study of the photographs of the damaged vehicles in the RICSAC tests indicates that
vehicle crush measurements were not necessarily obtained at the correct height. For
example, side impacts crush measurements appear in some instances to have been
taken at the height of maximum intrusion rather than along sill level as described in
Chapter 3. This is confirmed by Smith and Noga [109] who state that damage profiles
were measured at the level of maximum intrusion. This has resulted in a significant
overestimate to the damage sustained by some vehicles and a consequent increase in
the calculated crush energy absorbed by those vehicles. In other collisions the
reported damage length L or offset D are clearly incorrect when compared with

photographs.
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Also, and as identified by Smith and Noga [108], the estimation of the PDOF values
applicable to each vehicle are somewhat subjective and prone to error. The CRASH
results shown in Figure 5.1 and Appendix D are based on the original PDOF estimates.
In general, by Newton’s Third Law, the force acting on one vehicle should be equal in
magnitude to the force acting on the other vehicle. The force required to cause
damage to each vehicle can be calculated and a comparison between those forces
used to estimate the validity of the analysis. Any errors in the measurements to one or
other vehicle tend to be manifested in an obvious difference between the forces
calculated as causing the damage to each vehicle. Table 5.6 shows a summary of the

force differences determined for each of the RICSAC test collisions and the impact

type.

Table 5.6: RICSAC tests comparison of force difference and impact type

Test Force Difference (%) Impact Type
1 363 60° front to side
2 469 60° front to side
3 47 10° front to rear
4 99 10° front to rear
5 385 10° front to rear
6 577 60° front to side
7 608 60° front to side
8 14 90° front to side
9 80 90° front to side
10 66 90° front to side
11 4 10° front to front
12 29 10° front to front

Tests 1, 5, 6, and 7 reveal force differences well in excess of 100% and no systematic
relationship is apparent between the scale of error and type of collision. Comparison
with the photographs indicates that some adjustment to the crush measurements is
desirable. The author has examined and measured scores of damaged vehicles.
Based on this experience, photographs and the measurements an estimate of the likely
crush at the load bearing level have been made for each vehicle. The adjustments
made vary dependent on the particular damage to each vehicle. Although such a

process is somewhat rough and ready the resulting measurements provide a better
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approximation of the damage profiles to the stiff parts of the vehicles. Suitable

adjustments are detailed in Table 5.7

Table 5.7: RICSAC tests measurement adjustments

Test Damage Adjustments
1 v2 subtract 10 cm from each C; to Cg
2 v2 subtract 15 cm from each C; to Cg
3 vl add 5 cm to each C; to Cg. Set v2 offset to -50 cm
4 v2 subtract 15 cm from each C; to Cg
5 v2 subtract 20 cm from each C; to Cg
6 v2 subtract 15 cm from each C; to Cg
7 v2 subtract 20 cm from each C; to Cg
8 No adjustment
9 v2 subtract 10 cm from each C; to Cg
10 |v2 add 10 cm to each C; to Cg
11  |No adjustment
12  |Expand damage length L for both vehicles to 140 cm

It is possible to refine the PDOF values used by replacing the estimated values with
values calculated using Brach’s or Ishikawa’s models and the actual speeds of the
vehicles at impact. Adjusting the crush measurement profiles as indicated in Table 5.7
also has a secondary effect. As discussed in Chapter 3, McHenry [65] indicates that
the position of the point of application of the impulse can be assumed to be the centre
of mass of the damaged area, the damage centroid. Adjusting the damage profile
alters the calculated position of the damage centroid. Assuming that the calculated
damage centroid is the point of application of the impulse, and further assuming a
common post-impact velocity at the damage centroids, the refined PDOF values

obtained from the momentum only models are as shown in Table 5.8
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Table 5.8: Adjusted PDOF values (degrees)

RICSAC Original values Adjusted values Difference

test No. V1 V2 V1 V2 V1 V2
1 -30 30 -11.3 48.7 -18.7 -18.7
2 -30 30 -11.7 48.3 -18.3 -18.3
3 0 170 14.1 -175.9 -14.1 -14.1
4 -0.5 170.5 111 -178.9 -11.6 -10.6
5 0 170 11.6 -178.4 -11.6 -11.6
6 -30 30 -11 49 -19 -19
7 -30 30 -12.7 47.3 -17.3 -17.3
8 -30 60 -20.5 69.5 -9.5 -9.5
9 -30 60 -21.8 68.2 -8.2 -8.2
10 -65 25 -25.3 64.7 -39.7 -39.7
11 4.5 -4.5 -2.9 -11.9 7.4 7.4
12 4.5 -4.5 1 -8 3.5 3.5

Table 5.8 shows that the visual estimates of the PDOF are considerably different from
the PDOF values required to cause the desired change in velocity. Such a difference
has been noted previously by many commentators, e.g. Smith and Noga [108] and
Brach [12]. (Note: In test 10 it appears that the initial estimates of -65 and 25° may
have been transposed. However for consistency the data is retained as recorded.)

The amended data is used in subsequent sections.

5.3.5 Post-impact directions of travel

Interestingly, using the actual pre-impact speeds, the momentum only models of Brach
and Ishikawa predict post-impact directions of travel which are close to the actual post-
impact directions of travel recorded by Jones and Baum [51] The values and
differences between the post-impact directions of travel measured from Jones and

Baum and those calculated using Brach’s PIM are shown in Table 5.9
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Table 5.9: Post-impact directions of travel (degrees)

RICSAC Actual Values PIM Values Difference

test No. V1 V2 V1 V2 V1 V2
1 17 67 14 65 3 2
2 19 64 14 64 5 0
3 2 10 8 14 -6 -4
4 4 11 -2 -2
5 0 4 5 12 -5 -8
6 8 61 11 64 -3 -3
7 11 54 10 57 1 -3
8 50 56 25 58 25 -2
9 59 65 29 76 30 -11
10 65 66 33 72 32 -6
11 6 26 18 39 -12 -13
12 7 32 7 39 0 -7

The results for collision 11 appear to be anomalous, the reasons for which have not
been ascertained. However the results in Table 5.9 for the three 90° collisions
(numbers 8, 9 and 10) do not match the post-impact trajectories as precisely as the
other collisions. This is particularly pronounced as far as the less massive vehicle

(vehicle 1) is concerned in each collision.

In these particular collisions the recorded post impact directions of travel show that the
centres of mass of each vehicle moved approximately parallel to each other post-
impact. In these calculated scenarios, assuming a common post-impact velocity at the
damage centroids predicts that the vehicles ‘pass through’ each other. This is a
physically impossible result. Allowing restitution along the line of action of the impulse,
but maintaining a common tangential velocity produces calculated results which match

the recorded output scenarios.

This is illustrated in Figure 5.3 where the predicted motion of the vehicles in RICSAC 9

is shown with e, = 0 and e, = 0.3
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Figure 5.3: Motion of Centres of Mass with varying coefficients (RICSAC 9)

e

With the adjustments to the coefficient of restitution for collisions 8, 9 and 10, the post-

impact directions of travel calculated using PIM are shown in Table 5.10

Table 5.10: Post impact directions of travel with e=0.3 (degrees)

RICSAC Actual Values PIM Values Difference
test No. V1 V2 V1 V2 V1 V2
8 50 56 41 49 9 7
59 65 45 69 14 -4
10 65 66 54 66 2 0

The correspondence between the calculated post-impact directions of travel using
Brach’s PIM and the actual directions suggests that the momentum based models of
Brach and Ishikawa do predict accurately the post-impact directions of travel provided
suitable estimates can be made for the pre-impact speeds. This important finding that
the predicted post-impact directions of travel match very well with the actual post-
impact directions of travel is utilised in Chapter 7 to provide a way of refining initial

estimates of the PDOF to generate more accurate and reliable results.
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5.3.6 RICSAC analysis using adjusted data

The adjustments suggested in Table 5.7 and Table 5.8 have been included in a
second set of AiDamage analyses. These results are shown in Appendix F and

summarised in Figure 5.4 below

Figure 5.4: Comparison of original (raw) and adjusted CRASH results
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Using the adjusted measurements and PDOF values these tests now show that
CRASH underestimates Av by a mean of 2% with a standard deviation of about 22%.
An analysis of the error associated with each test is shown in Figure 5.5

Figure 5.5: Errors per individual test
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Although the majority of results show a range of differences less than about +30%, test
7 produces an anomalous result. In this calculation the change in velocity for vehicle 2
is calculated to be nearly 50% greater than the change in velocity determined from the
accelerometers. A similar overestimate is also noted using the momentum based
models of Brach and Ishikawa. This suggests that some other factor is responsible. It
has not been possible to definitively identify this factor. However in their DOT report
Jones and Baum [52] also report an overestimated Av for vehicle 2 in test 7 (35.5
mph). They suggest that this may be due to the fact that in this collision there was
significant rotation of vehicle 2 during the impact itself of approximately 22° and that
this is not modelled by CRASH. Excluding test 7 from the analysis suggests that
damage only algorithm of CRASH underestimates the true Av by 4% with a standard
deviation of 18%. Although the variation in the results remains relatively large,
comparing these adjusted results with the original raw data results tends to indicate
that improvements to the measuring process and in particular adjusting the PDOF to

match reality do produce more accurate results.

5.4 Theoretical Accuracy of CRASH

With the exception of the work performed by Smith and Noga [107] little work has been
performed to determine the theoretical accuracy of CRASH. As discussed previously
Smith and Noga utilised a simplified version of the CRASH equation, assumed a fixed
number of crush measurements and adopted the standard energy adjustment factor
proposed by McHenry [65]. There does not appear to be however a rigorous study to
quantify how potential error in any one of the input parameters to the CRASH equation
is likely to affect the overall result. Singh [100] determined the theoretical accuracy of
CRASH stiffness coefficients assuming normally distributed input parameters. This
approach of assuming normally distributed input parameters is also adopted here to
quantify how the errors in the input data affect the overall result. This approach was
adopted so that a confidence interval for the final result could be computed and

compared with Monte Carlo simulations which form the subject of the next Chapter.

Repeated measurements of a variable generally produce a result which has a normal
(Gaussian) distribution and can be written as x = N(i, 6°) where p is the mean and o is
the standard deviation so that ¢® represents the variance. A function f comprising a

number of such variables, x; ... X, can be written
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y=Ff(X,%,...., X,) . (5.2)

2

Error propagation theory shows that the variance in the result o, can then be

approximated by

op = zl:[ ja +le,_%:¢,)(ax j{;’: Jaij (5.3)

The second term in equation (5.3) represents the covariance between the variables x;
and x;. If the variables are independent and therefore uncorrelated, then o is zero so
that the second term in equation (5.3) vanishes. As a result the variance in a function f
for a number of independent variables is approximately given by

2
5 of

Similarly the absolute uncertainty Ay can be expressed as

n af 2
Ay =211 —AX | . (5.5)
i\ OX;

As demonstrated earlier the CRASH algorithm can be considered as two separate
parts, one to determine the crush energy values and the second to determine the
change in velocity. As such the variance may be determined for each calculation to
determine the crush energy which may then be used in the second part to determine
the overall variance in Av. Singh [99] shows that the work done in causing crush for an

arbitrary number of crush zones n can be determined from equation

L Ar] Bx , (n-1A” ~1)A? (5.6)
(n 1) 6 2B '
where
=2 IC;+Cil
= (5.7)

n-1

= Z[cf +CC+Ch |
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By applying equation (5.4) the variance in equation (5.6) can then be written as

2 2 2 2 2
o =[Ej J§+[E) o} J{%j ol + % o’ +(E) o’ (5.8)
oA oB oL on " ok
where the partial derivatives are defined in Appendix G and the variance in n and k are
defined as

2 2
n-1 877 an
2 _ o 2 . 2
0-77 Z [ oC. ] Gci ( oC. j O_Cm

- - (5.9)
, &I ok ‘ 5 o ) ,
= —_— + .
O-K ; L ac j O-Ci ( ac J GCM

Note that the partial derivatives were evaluated symbolically using Mathcad Version 13.

The input data to these and other equations is frequently quoted in the form x + ox
where the dx term represents the confidence limit applicable to that parameter (usually
95%). Assuming a normal distribution for the data and using a two-tailed hypothesis
test corresponding to 95% (i.e. a = 0.025) the standard deviation ¢ can be expressed

as

OoX

_ox 5.10
7196 (5.10)

5.4.1 Example: RICSAC 8

Applying equation (5.10) to the data allows the variance to be determined for each
parameter and thereby permits the calculation of the total variance or standard
deviation. This process is illustrated using the data from RICSAC tests [51] as shown
in Appendix D together with the 95% measurement confidence limits suggested by
Smith and Noga [108] in Table 5.2 Confidence limits are not available for the default
CRASHS stiffness coefficients so a nominal value of £10% was used which matches
the confidence interval used by Smith and Noga. This may well underestimate the true
confidence interval however as suggested by the work of Siddall and Day [98] where
their confidence limits on updated stiffness coefficients are generally higher. The effect
of using alternative confidence limits is discussed in later sections. RICSAC test 8 is

used for this example as it was one of the few tests where the measurements did not
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require adjustment. From this data the crush energy and confidence limits for each
vehicle were calculated using Mathcad. The model and results are shown in Appendix
H (Part 1) and show that the 95% confidence limits applicable to this calculation is
about +23%. The contribution to the confidence limits by each of the parameters in
equation (5.6) is shown in Table 5.11

Table 5.11: Contribution of individual energy parameters to overall confidence

limit
o Fraction of overall Fraction of total error
Variable Standard Deviation result (%) %)
V1 V2 V1 V2 V1 V2
A (N/cm) 31.8 12.8 154 5.86 42.91 6.58
B (N/cm?) 1.19 1.78 54 4.14 5.27 3.29
L (cm) 7.78 7.78 8.22 7.10 12.24 9.67
n (cm) 16.5 16.5 14.3 8.2 37.12 12.89
K (cm?) 342 816 3.69 18.8 2.47 67.57
Total (J) 3130 2470 235 22.8 100 100

These results demonstrate that the overall uncertainty in the determination of the crush
energy cannot be ascribed to one particular input parameter. For vehicle one, the
value of A and n are dominant but for vehicle 2, the dominant factor is the uncertainty
in the factor k. This suggests that an alternative approach is required to determine
what factors are dominant in calculating crush energy. This is discussed in more detalil

below.

Once the variance in crush energy has been determined however, this can be
multiplied by the energy adjustment factor to calculate the corrected crush energy. As
explained in Chapter 4 a number of energy adjustment factors have been proposed so
each will have a different error term. For consistency with existing work the standard

energy adjustment factor is used here
E=E,(+tan’ @) (5.11)

where E is the corrected energy, Eq, is the energy calculated from the measured data

and a is the angle of impulse with the original face of the vehicle. The result of
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equation (5.11) can then be used in equation (2.24) to calculate Av. Equation (2.24) is

repeated here for convenience

o [PREENEre)
"\ m(mas, +mo)d-e,)

(5.12)

where m; and m, are the masses for each vehicle, E; and E, are the corrected crush
energy values and 6; and &, are defined as
hlZ h2
51:1+F’ 52:1+k—22 (5.13)
1 2
where k; and k, are the radii of gyration and h; and h, are the lengths of the moment
arms about the centres of mass. The lengths of the moment arms can be found from

the expression

h=(x—x)sin&—ycosd (5.14)

where 6 is the PDOF, x is the displacement of the centre of mass of the vehicle to the
original surface and x and y are the displacements of the point of application of the
impulse perpendicular and parallel to the original surface. McHenry’s method [65] for
determining the location of the point of application of the impulse, by assuming this
point is the damage centroid, depends on the crush measurements and offset. It
follows therefore that h will be affected by any error in these measurements as well as
any error in the PDOF. As an alternative to equation (5.14) the position of the point of
application of the impulse can be defined using polar coordinates, d and ¢ about the
centre of mass in a manner similar to that described by Brach [11] so that

h=dsin(@+¢) (5.15)

Using polar coordinates is an effective way defining the position of the point of
application and is used here in preference to Cartesian coordinates to allow for greater
consistency and avoid potential problems when different surfaces of the vehicle are
considered. In any event the fact that any error in the PDOF affects h and E means
that the & and E parameters in equation (5.12) are likely to be correlated to some
extent. Since this cannot easily be determined analytically, a detailed discussion on

this aspect is deferred until the next Chapter. Assuming however that this correlation
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can be considered to be negligible, the variance of equation (5.11) can be calculated in
a similar manner as previously. The partial derivatives required for this series of

calculations are defined in Appendix G.

No data appears to be available on which to base suitable error bounds for the
parameters k, d or ¢. The 95% confidence limits for the radius of gyration is assumed
here therefore to be 0.1 m. The length of the moment arm (h) is determined by the
PDOF (6) and the position of the point of application of the impulse which is itself
defined through the parameters d and ¢. It is supposed here that the error in h is
constrained to lie within the same bounds as crush measurements, i.e. + 3" (7.62 cm).
Permitting a simple bound on the angular value of ¢ has the undesirable effect that the
lateral error in h is then also dependent upon the length of d. To negate this effect, the
model here constrains variation in the angle ¢ so that the lateral variation is the same

as the variation in d.

The model and results for RICSAC test 8 are shown in the Mathcad implementation of
the model. The full listing is in Appendix H (Part Il). The results show that the 95%
confidence limits applicable to the calculation of Av when using the raw data reported
by Jones and Baum [51] is about £18%. The contribution to the confidence limits by

each of the parameters in equation (5.12) is shown in Table 5.12

Table 5.12: Contribution of individual Av parameters to overall confidence limit

o . Fraction of total error
Variable Standard Deviation | Fraction of result (%) %)

V1 V2 V1 V2 V1 V2

m; 25.5 25.5 1.69 2.46 0.90 1.86

m, 25.5 25.5 0.43 2.31 0.06 1.68
E; 4665 - 7.25 - 16.68 -
E, 3898 - 6.06 - 11.65 -
01 0.402 - 14.9 - 70.20 -
0, 0.036 - 1.28 - 0.52 -
ep 0.00 - 0.00 - 0.00 -

Avy - 0.438 - 17.5 - 96.46

Total 0.438 0.424 17.7 18.1 100 100
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The results for this one test shows that the largest contributor to the overall error by far
is the error in 6;. For this collision 6, is 1.67 with a 95% confidence limit of +47% which
is due almost entirely to a large uncertainty in h;. In turn the uncertainty in h; can be
tracked back to the uncertainty in PDOF;. Reducing the uncertainty in the PDOF
parameters by setting the confidence limit to £10° reduces the overall uncertainty in Av
to around +12% and eliminating it entirely reduces the overall uncertainty to around
+9%. It appears therefore that an accurate estimate of PDOF is essential if a realistic
result is to be obtained.

5.4.2 Application to RICSAC tests

As discussed earlier, a more accurate estimate of the PDOF has been determined for
the RICSAC collisions along with more realistic measurements. The analytical model
developed here for RICSAC 8 and shown in Appendix H has been applied to each of
the collisions and including restitution where necessary, an estimate of the theoretical
accuracy has been be obtained. A comparison showing the calculated difference in
change in velocity (from Brach [12]) and theoretical limits of accuracy for the RICSAC

test series are shown in Figure 5.6

Figure 5.6: RICSAC - Comparison between calculated and theoretical accuracy
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The mean 95% confidence limit using +20° in the PDOF for each vehicle was found to
be +18%. Reducing the variability in the PDOF to +10° reduced the mean confidence
limit to £12.3% suggesting that if achievable, increased accuracy in estimating the

PDOF should produce significantly more accurate results. In several of the tests
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however it is noted that the calculated error is somewhat greater than the theoretical
error. This indicates that either the theoretical error is not taking some major factor into
account, the model itself is flawed, or that the source data itself contains one or more
errors. As previously indicated the measurement data is not ideal and examination of
the recorded changes in velocity indicate that these were themselves calculated from
potentially flawed sources. Although a record of the accelerometer data is present in
the RICSAC source data compiled by Shoemaker [96] and [97] no obvious reference to
actual post-impact speeds appears to have been recorded from which a change in
velocity could be calculated.

5.4.3 Application to Lotus test series

Alternative series of tests do exist from which additional comparisons can be made.
For example the Lotus series of tests performed by ITAI [45] were desighed so that
post-impact data was available from which post-impact speeds could be determined.
A similar comparison as above using uncorrected data from the Lotus tests and
changes in velocity calculated using post-impact data has also been performed. These
results are shown in Figure 5.7

Figure 5.7: Lotus - Comparison between calculated and theoretical accuracy
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The results show that for all but one vehicle the error in the calculated change in
velocity was smaller than the theoretical error. Although these vehicles appear to have
been measured more consistently and accurately than in the RICSAC series of tests,

flaws in the data have been noted e.g. Smith [103]. This is reflected in the results. The
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mean calculated error compared with the actual changes in speed was +10% with a
standard deviation of 3%. The mean 95% confidence limit using £20° in the PDOF for
each vehicle was found to be +12.4%.

5.5 Contribution to uncertainty by individual input parameters

A more useful comparison of the effect of uncertainty in individual input parameters can
be obtained by considering the overall confidence limits to Av achieved using a range
of uncertainty in individual input parameters. This allows a direct comparison to be
made with Smith and Noga’s [108] results. The CRASH algorithm as a whole can be
considered to be a sequence of individual components each taking various input

parameters as shown in Figure 5.8

Figure 5.8: Relationship between input parameters
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The parameters shown in blue in Figure 5.8 are measured or otherwise determined by
the user. Other parameters are interim values dependent upon those inputs. Each of
the input parameters will have an uncertainty associated with it. By eliminating the
uncertainty in all inputs except for the parameter under investigation the effect of
uncertainty in each input parameter can be investigated. Suitable ranges for each of
the parameters have been designed as shown in Table 5.13. These are designed to
encompass the uncertainties suggested by Smith and Noga [108] as shown in Table
5.2 and also to examine the relationship between uncertainty in each parameter and
the overall uncertainty in the result.

Table 5.13: Uncertainty in individual parameters

Parameter Description Uncertainty used
oC Uncertainty in crush measurements 0.01, 0.05,0.1m
oL Uncertainty in damage length 0.01, 0.05, 0.1, 0.15,0.2m
om Uncertainty in mass 10, 25, 50 100 kg

OPDOF Uncertainty in PDOF 1,5, 10, 15, 20, 25°

od Uncertainty in position of point of application 0.01, 0.05,0.1,0.2m
ok Uncertainty in radius of gyration 0.01,0.05,0.1,0.2m
OA Uncertainty in A stiffness coefficient 5, 10, 15, 20%
oB Uncertainty in B stiffness coefficient 5, 10, 15, 20%

5.5.1 Application to RICSAC tests

The results from this analysis as applied to the RICSAC series of crash tests are
shown in Appendix I. The overall uncertainty shown in Table 1.1 is calculated using the
95% confidence levels suggested by Smith and Noga which allows a direct comparison
to be made with their work. Since no uncertainty was ascribed by Smith and Noga to
the position of the point of application (d), a 95% confidence level identical to the crush
measurement uncertainty was used, i.e. £3” (0.0762 m). Siddall and Day [98] as part
of their update to the vehicle stiffness coefficients shows that the radius of gyration (k)
varies from about 1.25 m for small cars up to about 1.55 m for large cars. The range of

probable values for k is therefore likely to be relatively small. Thus a 95% confidence
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level of 0.1 m was assigned to the uncertainty in the radii of gyration (k)

measurements.

The tables in Appendix | show results show a linear response with respect to each of
the parameters under investigation. For example multiplying the uncertainty in any one
parameter by a factor of two, doubles the resultant contribution to uncertainty by that
parameter. Since the uncertainty in each factor is determined from the product of the
appropriate partial derivative and associated uncertainty, such a linear response may
be expected for all collisions. The total uncertainty can then be found from application
of equation (5.5) as the sum of the squares of the individual uncertainties. It is
important to note however that in any particular collision the uncertainty in a parameter
may be identical to the uncertainty in another collision, but the numerical result of the
associated partial derivative is unlikely to be the same. This leads to different results

for different collision scenarios.

The results have been grouped by impact configuration which highlights some obvious
trends. Figure 5.9 shows the overall uncertainty grouped by impact configuration. It is
clear from Figure 5.9 that the front to front and front to rear impact configurations
appear to be inherently more accurate than the front to side impact configurations with
the 60° front to side impacts predicting overall uncertainty of around 27%

Figure 5.9: Overall uncertainty grouped by impact type
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An analysis of the individual contributions made by each of the input parameters shows
the main sources of uncertainty in the overall result. An analysis of the relative
contribution made by each of the input parameters grouped by impact type reveals the
results shown in Figure 5.10

Figure 5.10: Percentage contribution to uncertainty grouped by impact type
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The major contributor to overall uncertainty in Av is clearly the uncertainty in the PDOF
which confirms the findings of Smith and Noga [108]. Although the overall contribution
of uncertainty in the PDOF at 61% is lower than that found by Smith and Noga, these
new results provide significant insight into the overall uncertainty. The results here
show the effect of a larger range of input parameters rather than simply the three

parameters of PDOF, crush and mass considered by Smith and Noga.

It is clear from these results that the uncertainty associated with some parameters are
unlikely to have any significant effect on the overall uncertainty. For example
uncertainty in the position of the point of application of the impulse to each vehicle and
radii of gyration has a negligible effect. A 0.0762 m (3”) uncertainty in the crush
measurements generates a contribution of 4% to 10%. As may be expected, a larger

contribution to the overall error is noted for those tests where the crush measurements
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were relatively small. Similarly a fixed uncertainty of 0.1524 m (6”) in damage length

becomes more significant for shorter damage lengths.

5.5.2 Analysis of effect of uncertainty in estimate of PDOF

When grouped by impact configuration, it can be seen that the uncertainty in the PDOF
mirrors the overall uncertainty for that configuration which is itself indicative of the
dominant role played by the uncertainty in the PDOF. Figure 5.11 shows the
percentage contribution to uncertainty of the PDOF measurement compared with the
overall uncertainty for each of the RICSAC tests. As can be seen, in the three 60° front
to side impacts (tests 1, 6 and 7) the percentage contribution of the uncertainty in the
PDOF measurement approaches 90%. For the front to front (tests 11 and 12) and front
to rear (tests 2, 3 and 5) collisions the contribution of the PDOF uncertainty is

significantly lower.

Figure 5.11: Relative contribution of uncertainty in PDOF to overall uncertainty
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This pattern is due in part to the behaviour of the standard energy adjustment factor. In
these tests the energy adjustment factor shown in equation (5.11) is unbounded and
increases with more oblique angles of incidence as described in Chapter 4. In the front

to front and front to rear impacts the nominal angle of incidence is close to
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perpendicular to the vehicle surface. Thus any variation in the angle of incidence « will
produce relatively small changes to the adjustment factor. In the 60° front to side
impacts the nominal angle of incidence is around 40° to 50° for one of the vehicles in
each of these collisions. In such cases a variation in PDOF of £20° therefore produces
a possible range of adjustment factors from around 1.1 to 8.5. Applying an upper
bound on this factor of 2 was suggested by McHenry [65] to eliminate excessive
adjustment factors. Such a modification is generally utilised in practical applications of

the CRASH algorithm and thereby reduces the overall uncertainty.

In the analysis presented in this Chapter the error term associated with the adjustment
factor is determined from the partial differentiation of the adjustment factor with respect
to a as shown in Appendix G and reproduced below

ﬁ:Zseczoztanoz =2tan a(1+tan® o). (5.16)

oa
Equation (5.4) can be applied to the result of equation (5.16) to determine the variance
and standard deviation in the adjustment factor. It is noted that the result of equation
(5.16) will be zero for a nominal angle of incidence of zero indicating that at such
angles the standard deviation in the adjustment factor is also zero. However at larger
angles of incidence the standard deviation will become progressively larger as it
depends in part on the term tan(a) which increases with increasing angle. At larger
nominal angles the result of equation (5.16) is therefore larger producing a larger
variance in the overall result. It is possible to mitigate this effect somewhat by
constraining the adjustment factor to a maximum value of 2. This requires some
modification to the Mathcad implementation of the model shown in Appendix H. This
can be achieved by conditionally replacing the standard deviation determined from

equation (5.16) and (5.4) with a value determined from

o - 2-(1+tan*a) 1-tan’«a
cF 1.96 1.96

(5.17)

This modification is necessary only where the standard deviation is such that the 95%
confidence limits applied to the nominal value exceed 2 as is the case in the 60° front
to side impacts. Applying this modification produces results shown in tables .11 and
1.12 in Appendix | and reduces the overall uncertainty in the 60° front to side impacts to

around 15%. The remaining RICSAC tests are unaffected by this modification. A
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comparison between the original contribution to uncertainty by variation in the PDOF
and the effect of reducing the variability in the adjustment factor to zero is shown in
Figure 5.12

Figure 5.12: Effect of eliminating energy adjustment
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The remaining contribution of variation in the PDOF to uncertainty in the overall result
is due to the variation in the length of the moment arm (h). Some correlation is
apparent between the sum of the lengths of the two moment arms (h; + h,) and the
contribution to overall uncertainty in the PDOF. This correlation is explored in more
detail in the next Chapter. The 90° front to side impacts in the RICSAC test series
generate moment arm sums which are considerable longer than the moment arm sums
found for the front to front or front to side impacts. Some impact configurations appear

therefore be inherently more sensitive in this respect.

As a result of this analysis it appears that an uncertainty in the PDOF of +20° can
produce results which have a relatively high level of overall uncertainty of over 25% for
some impact configurations. It appears that the only method available to reduce this
uncertainty to more acceptable limits is to reduce the uncertainty in the estimate of the
PDOF. For real-world collisions this may of course be impractical. As outlined earlier,

using the actual pre-impact speeds for the RICSAC tests in the momentum only
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models generated post-impact directions of travel which matched the empirical results.
As a consequence the derived PDOF values were considerably more accurate than
initial visual estimates. This suggests that the reverse situation is also likely to be valid;
if the post-impact directions of travel can be ascertained, then it should be possible to
generate more realistic estimates for the PDOF. Such an approach is developed in
Chapter 7.

5.6 Summary

In this Chapter several empirical studies were examined and these appear to show that
CRASH has the potential at least to produce changes in velocity results to within about
15% of the true change in velocity. The well known RICSAC tests were examined in
detail to determine whether the claimed accuracy could be replicated using a known
data set. Several problems with the RICSAC data were encountered and only partially
resolved. Although the mean results did show an acceptable level of accuracy
individual test collisions produced results which were not as accurate. Raw data from
another series of tests was also examined which appear to show a greater level of

accuracy.

The theoretical accuracy expected from variation in the empirical measurements was
derived and examined. As found by Smith and Noga [107] the largest individual
contribution to the overall uncertainty was the estimation of the PDOF parameter for

each vehicle.

In the next Chapter, the issue of overall accuracy in the CRASH model is examined in
more detail. A Monte Carlo simulation model is developed both to compare the results

with the analytical process adopted in this Chapter and with real-world collisions.
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Chapter 6

Monte Carlo Simulation to Determine

Probable Limits of Accuracy

6.1 Objectives

In this Chapter the work of the previous Chapter is extended and a simulation model is
developed to analyse the probable limits on accuracy of the CRASH model in more
detail. The input parameters are chosen randomly from a known distribution and the

Monte Carlo method used to determine the results.

6.2 Description and development of model used

6.2.1 Introduction

In the previous Chapter an analytical approach was adopted to determine the likely
accuracy that can be expected from use of the CRASH model. Useful results were
obtained. However a number of potential problems were identified such as possible
correlation between some of the input parameters. In order to remove these potential
problems another method to determine the likely accuracy is desirable. The approach
adopted is to develop a model using the Monte Carlo method on a range of values for

the input parameters.

In essence the Monte Carlo method relies on a large number of individual calculations

of the result using randomly assigned input parameters. A statistical analysis can then
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be performed on the results to determine the probable outcome. Monte Carlo methods
can only yield probabilistic and not true results, i.e. it is only possible to give a
probability that the Monte Carlo estimate lies within a certain range of the true value.
The error term associated with any such estimate is also probabilistic and has a mean
value of ?/N where o? is the variance in the estimate and N is the number of iterations

performed in the simulation. It follows therefore that the standard deviation of a Monte

Carlo simulation scales as 1/+/N. To obtain a likely precision in the standard deviation

of a result to +0.01 therefore at least 10 iterations are required.

Monte Carlo methods rely on a large number of calculations to determine a mean value
and probable range of uncertainty. The analytical approach is computationally simpler
and easier to implement in practical scenarios than an equivalent Monte Carlo
simulation. It is also desirable therefore to determine whether the analytical results
obtained previously can be confirmed using a Monte Carlo simulation. Such a result

would enable the calculation of error bounds on the overall results.

6.2.2 Input parameters

The input parameters to the Monte Carlo method are required to be randomly
distributed about the desired mean value according to some probability distribution.
Some method for determining the assignment of values is therefore required.
Computers are essentially deterministic machines and as such any computer based
random number generator will be at best a pseudo-random number generator. As
indicated by Weinzierl [122] the true randomness of the generated numbers is not
particularly relevant to Monte Carlo methods. It is more important that the sampling of
the distribution is as uniform as possible. The requirement for a uniform distribution is
also highlighted by Robert and Casella [92]. A potential problem with random numbers
is that the numbers need not be distributed evenly over a finite sample. Levy [58]
illustrates the clustering and gaps that may occur in pseudo-random sequences. For
Monte Carlo simulations Levy shows that it is preferable to use quasi-random

sequences where the numbers are distributed uniformly.

The Mathcad documentation [64] indicates that the random number generator used by
Mathcad generates quasi-random numbers distributed according to the required
probability density function. As mentioned in the previous Chapter, repeated

measurements of a variable generally produce a result which has a normal or
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Gaussian distribution. For this reason it is assumed initially that the input parameters
to the CRASH equation will also be normally distributed about a nominal mean value.
The assumption of a normal distribution may not be valid for all parameters so the
effect of different distributions is also investigated.

6.3 Testing methodology

To determine the effect of uncertainty in each input parameter a series of collisions are
simulated. A simple vehicle colliding head-on into a barrier is modelled initially with
more complex scenarios developed where necessary. Each of the input parameters
are varied systematically to determine the overall confidence limits on the results. The
simulation is also applied to the RICSAC [51] series of crash tests to provide a
comparison with the analytical method described in the previous Chapter. The same
input parameters and confidence limits are used as described in Table 5.13. This

allows a direct comparison to be made with the analytical model for the RICSAC tests.

The Mathcad implementation of the model developed for this analysis is shown in
Appendix J. For comparison with Appendix H and Chapter 5 the data from RICSAC 8
is displayed.

One adverse effect of using a random normal distribution about a nominal mean value
is that certain values may be generated which are physically impossible. For example
crush measurements should to be constrained so that they do not become negative.
Similarly A and B stiffness coefficients cannot be less than zero. The basic model has
therefore been modified so that physically impossible values are not utilised but are
replaced with realistic values. The method developed here to constrain the generation
of values is to truncate the lower end of the data to zero. Where individual values are
negative the random number generator is utilised to generate a replacement value
which is positive. To avoid unnecessary bias, the upper end of the data is similarly
constrained. The combined effect maintains the nominal mean value v but reduces the
range so that the parameter falls within the range 0 < v £ 2v and as such will reduce

the variance.

An illustration of the effect of these constraints is shown in Figure 6.1. In this example
a nominal mean value of 20 was used with a 95% confidence limit of +15. The

histogram on the left shows the raw distribution obtained from 10* samples. The
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second histogram to the right shows the same distribution after adjustment to remove

the lower and upper tails of data.

Figure 6.1: Effect of constraints (Sample of 10* normally distributed values)
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In general, unless the uncertainty in a particular parameter is more than approximately
75% of the value of the parameter (as in this example) the effect of this modification is
likely to be negligible. In any case the only effect should be simply to reduce the
standard deviation in the parameter under investigation. In this example the
unconstrained standard deviation was found to be 7.63 and the constrained standard
deviation was 7.42. The only parameters that are likely to be significantly affected

therefore are the crush measurements which may be close to or equal to zero.

6.4 Results for arigid barrier

The analysis of a series of simulations of a vehicle colliding head-on into a rigid barrier
reveals much about the way in which uncertainty in the input parameters affect the
overall accuracy. Three collisions were simulated assuming uniform crush of 0.1, 0.2
and 0.4 metres respectively. The input data and results obtained from the Mathcad
implementation of the model in Appendix J are shown in Appendix K. Assuming 95%
confidence limits on the input parameters suggested by Smith and Noga [108] and
discussed in Chapter 5, the overall uncertainty in the final result is around 19% for the
0.1 m crush reducing to 10% for the 0.4 m crush. As in the previous Chapter, the

contribution to overall uncertainty by each of the input parameters is analysed. Again
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as noted in the previous Chapter, the overall uncertainty can be found as the square
root of the sum of the individual squared uncertainties. The results however can only
be an approximation to the overall confidence limits since the exact values found differ

on each program run due to the random assignment of input values.

6.4.1 Effect of uncertainty in crush measurements

As suggested by the overall results and confirmed by a detailed analysis, the major
contribution to uncertainty in head-on barrier collisions is the uncertainty in the crush
measurements. Assuming 95% confidence levels suggested by Smith and Noga [108]
uncertainty in the crush measurements contributes about 84% of the total uncertainty
for the 0.1 m crush and about 45% for the 0.4 m crush. The individual contribution of
uncertainty in the crush measurements to the overall result is approximately linear up
to the £0.1 m level. However, extending the uncertainty well beyond this range reveals

a non-linear response as shown in Figure 6.2

Figure 6.2: Contribution to uncertainty by variation in crush measurements
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This response at increasing levels of uncertainty is due to the constraint limiting the
variability in crush measurements C to the range 0 < C < 2C as programmed into the
model and described above. Importantly these results confirm the earlier suggestion
that provided the uncertainty in the crush measurement is not greater than about 75%
of the nominal crush value, the effect of the constraint is not significant. As might be
expected these results show too that at low levels of overall crush, uncertainty in the
crush measurements can contribute a significant uncertainty to the overall result. At
low levels of overall crush therefore, measurements need to be taken with as much

precision as possible.

Although the result can be sensitive to uncertainty in the depth of crush, the Monte
Carlo simulations suggest that Av is not as sensitive to uncertainty in the length of the
damaged area. In these simulations the damage length was assigned a nominal value
of 1.3 m which is typical of the width of the front of a small car. Assuming an
uncertainty of 0.1524 m (6”) in the damage length as suggested by Smith and Noga
[108] the contribution to uncertainty is approximately 5.6 % and is identical for each of
the simulations. The results show a linear response to increasing uncertainty and are

illustrated in Figure 6.3

Figure 6.3: Contribution to uncertainty by variation in damage length
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6.4.2 Effect of uncertainty in PDOF

The high contribution to overall uncertainty by crush found in these results conflicts with
the findings of the previous Chapter where the major contributor was found to be the
uncertainty in the PDOF. In these simulations the contribution by the PDOF is
relatively small and represents less than 1% of the total uncertainty in the 0.1 m crush
simulation up to about 3% in the 0.4 m crush simulation. Although the proportion of the
total uncertainty varies, the numerical value for the contribution to uncertainty for each
of the simulations is identical. (A slight variation is expected due to the random nature
of the inputs.) The response of uncertainty in the result to increasing uncertainty in the
PDOF is shown in Figure 6.4

Figure 6.4: Contribution to uncertainty by variation in PDOF
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The response to increasing uncertainty in PDOF obtained by these results is clearly
non-linear. Further analysis reveals the reasons for this non-linearity and also the
reasons for the relatively small contribution to overall uncertainty in these simulations.
Variation in the PDOF has two effects. One is the effect on the length of the moment
arm, h which in turn affects the numerical value for é used in the denominator of the
CRASH equation as shown by equations (5.13) and (5.15). The second effect is that
variation in the PDOF affects the energy adjustment factor. In these analyses the

standard energy adjustment factor proposed by McHenry [65] is utilised as shown in
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equation (5.11). Variation in this factor affects the overall value of E used in the
numerator of the CRASH equation. The relative values of each of these terms
therefore contributes in a non-linear way to the overall result. In these simulations the
nominal PDOF value is zero and variations either side of the nominal value can be
used to show the relationship between the changes in the values of 6; and E;. Ignoring
restitution, the CRASH equation [equation (2.24)] can be written as

(6.1)

In collisions such as these where the barrier is assumed to have an effectively infinite
mass, the second term in the denominator of equation (6.1) vanishes. In addition the
term E, is zero since the barrier does not deform to absorb energy. This produces the

simplified expression

Av, = £ : (6.2)
\/ m,o,

The change in E; as a result of the change in PDOF (A8) can be found from equation
(5.11) as

AE, =tan’(A0). (6.3)

Substituting equation (5.15) into (5.13) produces an expression for §; so that the
change in &; as a result of uncertainty in the PDOF (A6) can be expressed as

_dZsin®(AG+9¢)
k? '

A, (6.4)

Thus the overall change in Av; as a result in the change in PDOF is given by the

square root of the ratio AE; / Ad; i.e.

AAV,) = ki tan®(A0) Kk tan(A®) 6.5)
YU\ d2sin?(AG+¢)  d sin(AO+¢) '
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In the car to barrier simulations described here the point of application of the impulse
lies on the centre line of the vehicle so that ¢ is zero. This leads to a simplification of

equation (6.5) giving

A(AV) = kftanz(AH): k, (6.6)
! dZsin?(A6) d,cos(Af) '

Equation (6.6) shows that error in the estimate of PDOF produces an overall effect

which is inversely proportional to the cosine of the error in angle, with a magnitude
dependent on the ratio of k; / d;.  This is illustrated in Figure 6.5 where a range of

ratios for k; / d; are shown

Figure 6.5: Effect of ratio k/d with uncertainty in estimate of PDOF (¢ = 0)
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If k; < d; therefore variations in the estimate of PDOF close to the nominal estimate for
the PDOF produce a result smaller than the nominal value for Av;. The actual angle
where the overall response again produces a result equal to the nominal value for Av;
can be found from equation (6.6). In Figure 6.5 for example the 90% ratio between k;
and d; indicates that the nominal result for Av; is not reached until the PDOF angle is
greater than 25.8° from head-on. In turn this has a significant effect on the shape of
the distribution of results from the Monte Carlo simulation. Results from two Monte
Carlo simulations showing the distributions obtained from a simulation where k; is

120% of d; and where k; has a value of 80% of d, are shown in Figure 6.6

113



6. Monte Carlo Simulation to Determine Probable Limits of Accuracy Jon Neades

Figure 6.6: Shape of distribution showing dependence on ratio k/d (¢ = 0)
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These results can be expressed in a more general way. Where the k = d the
distribution has a lower bound at the nominal value of Av and tails off towards an upper
bound determined by the uncertainty in the estimation of PDOF. If k < d however there
is a small peak below the nominal value with few or no values above the nominal value
peak. In both scenarios the mode corresponds to the nominal mean value. The
magnitude of uncertainty in the final result due to the uncertainty in PDOF is also found

to be dependent on the ratio k/d as shown in Figure 6.7

Figure 6.7: Dependence of overall uncertainty in PDOF on ratio k/d (¢ = 0)
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Figure 6.7 shows that if k is much larger or smaller than d then the overall uncertainty
in Av increases significantly from a minimum value. (The minimum value itself is
dependent on the uncertainty in the estimation of PDOF.) The overall uncertainty
appears to be more sensitive where k is smaller than d. In the frontal barrier
simulations used in this section, the ratio k/d is about 0.77. The dependence on
sensitivity in PDOF to the ratio k/d is independent of the actual values for k or d. This
means that the same overall uncertainty introduced by uncertainty in PDOF will apply
to all vehicle to barrier collisions with a similar k/d ratio.

Figure 6.5 and equation (6.6) utilise the simplifying assumption that the angle ¢ was
zero as is the case for the frontal barrier impacts considered here. In real-world
collisions ¢ is unlikely to be zero as the point of application of the impulse is unlikely to
lie of the centre line of a vehicle. The inclusion of a non-zero value for ¢ as shown in
equation (6.5) alters the dependence of overall uncertainty on the ratio k/d. For

example utilising a 10° value for ¢ produces the graph shown in Figure 6.8

Figure 6.8: Effect of ratio k/d with uncertainty in estimate of PDOF (¢ = 10°)
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It can be seen from Figure 6.8 that where ¢ is non-zero variations in the estimate of
PDOF close to the nominal estimate for the PDOF produce a result lower than the

nominal value for Av regardless of the ratio k/d. Larger values for ¢ produce a more
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linear series of curves. As a consequence the shape of the distribution of results from
the Monte Carlo simulations alters so that the mode no longer corresponds to the
nominal mean value. The modes tend to be somewhat lower and the data more
dispersed than when ¢ is zero. Figure 6.9 shows the results from two Monte Carlo
simulations showing the distributions obtained where k is 120% and 80% of d

respectively

Figure 6.9: Shape of distribution showing dependence on ratio k/d (¢ = 10°)
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In these particular simulations, when k = 1.2 d the nominal mean value for Av is 10.4
ms™ and when k = 0.8 d Av is 10.3 ms™. It can be seen therefore that the mode in
each of the histograms shown in Figure 6.9 underestimate the nominal mean values. It
can also be seen that when k < d the discrepancy between the nominal mean value
and the mode value tends to be greater than when k > d. The mean Av value from
Monte Carlo simulation also underestimates the nominal Av when k < d but

overestimates when k > d.

The overall sensitivity of Av to changes in PDOF where ¢ is non-zero follow similar
curves to those shown in Figure 6.7. However the overall uncertainty is greater and
the lower bound less pronounced. In addition the lower bound is displaced towards the
right towards higher values for the ratio k/d. The dependence of overall uncertainty

where ¢is non-zero is illustrated in Figure 6.10
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Figure 6.10: Dependence of overall uncertainty in PDOF on ratio k/d (¢ = 10°)
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Although the discussion above is directly applicable to frontal collisions only, a similar
argument can be applied to the rear and sides of a vehicle and a similar distribution
can be expected. In two vehicle collisions, the overall uncertainty will be partially
dependent on both of the k/d ratios and to a lesser extent the values for ¢. It follows
therefore that if the two k/d ratios are both close to unity then Av is not particularly
sensitive to uncertainty in the PDOF. If one or both of the k/d ratios are significantly
greater or less than unity however, then the same uncertainty in PDOF will produce a
greater uncertainty in the overall result.

An analysis of the generic vehicle data provided by Siddall and Day [98] as part of
their update to the vehicle stiffness coefficients shows that the radius of gyration (k)
varies from about 1.25 m for small cars up to about 1.55 m for large cars. The range of
probable values for k is therefore relatively small. The range of distances of the point
of application to the centre of mass (d) is dependent to a large extent on the part of
vehicle which has been struck and the size of the vehicle. The front and rear of a
vehicle are somewhat further away from the centre of mass than either side of the
vehicle. A collision which strikes a vehicle on the side close to the centre of the vehicle
is likely to produce a small value for d and consequently a relatively large k/d ratio. It
can be expected from this analysis therefore that some impacts are likely to be more
sensitive to uncertainty in the PDOF.

117



6. Monte Carlo Simulation to Determine Probable Limits of Accuracy Jon Neades

6.4.3 Effect of uncertainty in position of point of application

The simulations performed here suggest that the overall uncertainty in Av is not
particularly sensitive to changes in the position of the point of application. The overall
contribution to uncertainty is less than 1% for a 0.2 m potential error in estimating the
point of application. The results obtained by these simulations are identical for all three

crush depths and are shown in Figure 6.11

Figure 6.11: Contribution to uncertainty by variation in point of application
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Uncertainty in the point of application affects the length of the moment arm (h) as

shown by equation (5.15) and reproduced below
h=dsin(@+¢). (6.7)

As the nominal values for 8 and ¢ are both zero in these simulations, the length h may
be expected to be zero regardless of the actual value for d. As explained in the
previous Chapter however, permitting a simple bound on the angular value of ¢ has the
effect that the lateral error in h is then also dependent upon the length of d. The model
here constrains variation in the angle ¢ so that the lateral variation is the same as the
variation in d. It follows that in this model the value of the angle ¢ is also dependent on

the uncertainty in d which produces a non-zero value for h. The consequent
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uncertainty in h affects the magnitude of & which appears in the denominator of

equation (6.2).

6.4.4 Effect of uncertainty in mass

The results of the simulations performed here confirm the earlier findings of Smith and
Noga [108] to the extent that the result does not appear to be particularly sensitive to
uncertainty in the measurement of mass. Assuming the same confidence limit of 50kg
as suggested by Smith and Noga, the contribution to the overall uncertainty is less than
2% and is identical for all three simulations. The results show a linear response to

increasing uncertainty and are illustrated in Figure 6.12

Figure 6.12: Contribution to uncertainty by variation in mass
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6.4.5 Effect of uncertainty in stiffness coefficients

Smith and Noga [108] determined that an uncertainty of 10% in the stiffness
coefficients produced errors of between 2 to 6% in the calculation of Av. The
simulations performed here confirm these results and yield significant new ones. As

may be expected the response to uncertainty is dependent on the crush
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measurements. The results obtained by varying the individual stiffness coefficients are

shown below in Figure 6.13 and Figure 6.14

Figure 6.13: Contribution to uncertainty by variation in A stiffness coefficient
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Figure 6.14:

Contribution to uncertainty by variation in B stiffness coefficient

Contribution to uncertainty (%)

18
16
14
12
10

o N B~ O

e 10 CMN

o0 cm /

e 40 €M /
e

 _—

-

o

—_

,// /
Z———

10 20 30 40
Uncertainty in B coefficient (%)

50

60

120



6. Monte Carlo Simulation to Determine Probable Limits of Accuracy Jon Neades

As can be seen the overall uncertainty responds approximately linearly to increasing
uncertainty in each of the stiffness coefficients. At low levels of crush the overall
uncertainty is dominated by the potential error in the A stiffness coefficient. With higher
levels of uncertainty the B stiffness coefficient becomes dominant. This is due to the
behaviour of the equation to determine the work done in causing crush. As outlined
earlier, Singh [99] shows that the work done in causing crush can be determined from

equation (2.35). This may be rewritten as the sum of three terms, i.e.

LA; LBx  LA®

= + + (6.8)
(n-)2 (n-1)6 2B
where
n-1 n-1
n=Y[C+C.,l x=)[C’+CC,+C] (6.9)
i=1 i=1

The first and second terms in equation (6.8) determine the contributions made by the A
and B coefficients respectively with variable crush measurements and the third term is
a constant which is not dependent on crush. The contribution by each of the terms can
be plotted against increasing crush to determine the relative contribution made by each
term as a function of crush depth. This is illustrated in Figure 6.15

Figure 6.15: Contribution by each term to total energy
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Figure 6.15 shows that that the relative contribution by the constant third term rapidly
falls with increasing crush. The 1* term peaks where the point where the contribution
by the 2" and 3™ terms are equal and then falls away leaving the 2™ term as the
dominant contributor above a certain critical value. Of minor interest is that assuming a
uniform crush depth, this critical value is reached when the crush depth reaches 2A/B
and the 1% term peaks where crush depth is equal to A/B. This indicates that there is a
certain level of crush below which uncertainty in the A coefficient will be dominant and
above which uncertainty in the B coefficient will be dominant. Again assuming uniform

crush, this level is at 3A/B.

6.5 Monte Carlo simulation of RICSAC tests

The Monte Carlo simulation shown in Appendix J was applied to the RICSAC series of
crash tests. A similar approach is adopted as outlined in the previous chapter. Figure
5.8 shows in blue the input parameters which are measured or otherwise determined
by the user. Each of the input parameters has an uncertainty associated with it. By
eliminating the uncertainty in all inputs except for the parameter under investigation the
effect of uncertainty in each input parameter can be investigated. Suitable ranges for
each of the input parameters are shown in Table 5.13 and are chosen to match those
used for the analysis in the previous Chapter.

The results from these simulations are shown in Appendix L. The overall uncertainty in
DeltaV as shown in Table L.1 is calculated using the 95% confidence levels suggested
by Smith and Noga [108] As in the previous Chapter, since no uncertainty was
ascribed by Smith and Noga to the position of the point of application (d), a 95%
confidence level identical to the crush measurement uncertainty was used, i.e. +3”
(0.0762 m). A 95% confidence level of 0.1 m was assigned to the uncertainty in the
radii of gyration (k) measurements. As noted earlier, the overall uncertainty can be
found as the square root of the sum of the individual squared uncertainties. The results
however can only be an approximation to the overall confidence limits since the exact
values found differ on each run of the simulation due to the random assignment of input

values.

In general the results from this analysis match closely those obtained from the analysis
in the previous Chapter. The same pattern is evident showing that some impact

configurations appear to be inherently more sensitive to uncertainty in the input
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parameters than others. In addition it can be seen that the major contributor is the
uncertainty remains the uncertainty in PDOF. However the mean contribution to
overall uncertainty in this parameter is reduced from the 61% found using the analytical
model to 52%. The mean contribution made by uncertainty in the crush measurements
is increased from 9% using the analytical model to 15% using the Monte Carlo model.
These differences are discussed in more detail below. Since uncertainty due to the
remaining parameters is virtually the same, these other parameters are not considered

in detail. A comparison between the two sets of results is shown in Figure 6.16

Figure 6.16: Comparison of percentage contributions to uncertainty
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The results shown in Figure 6.16 show that even if there are differences between the
models it is clear that both models rank the effect of uncertainty in the same order. So
in both models uncertainty in PDOF is by far the most important parameter, followed by

length and the crush measurements.

6.5.1 Contribution by uncertainty in crush measurements

The contribution by uncertainty in the crush measurements is somewhat higher in the
Monte Carlo simulation than in the analytical model. In all cases and for all levels of
uncertainty in crush, the Monte Carlo simulations predict a higher contribution to overall

uncertainty. Uncertainty in the crush measurements directly affects the values for n
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and k determined by equation (6.9) and these parameters are subsequently used to
determine the crush energy in equation (6.8). Analysis of the results derived from
equation (6.9) show that the Monte Carlo model generates mean values for k which are
higher than the nominal mean value and that there is a small positive skew. This
appears to be due to the fact that the k term is the sum of squared and therefore

positive values.

Figure 6.17 shows the difference between Monte Carlo model and analytical model for
each of the RICSAC tests at three levels of crush uncertainty, 0.01, 0.05 and 0.10

metres.

Figure 6.17: Difference in contribution by crush uncertainty between models
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The difference between the actual contributions to overall uncertainty range from less
than 1% to just over 3.2% even for uncertainty in crush of 0.1 m. The worst case from
this analysis was RICSAC test 9 where the overall contribution to uncertainty was
12.7% in the Monte Carlo simulation and 9.5% in the analytical model. For this
particular collision this represents a difference of less than 0.2 ms™ in the uncertainty in
Av;. Lower levels of uncertainty in crush produce a much smaller overall contribution.
It is considered therefore that although there is clearly a difference between the
analytical and Monte Carlo models, for practical purposes that difference can be

considered to be negligible.
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6.5.2 Contribution by uncertainty in PDOF

The effect of uncertainty in the PDOF averaged over all the collisions is 52% in the
Monte Carlo simulations compared with 61% in the analytical model considered in the
previous Chapter. The results shown in Appendix L show a much greater variation

between individual collisions as shown in Figure 6.18

Figure 6.18: Difference in contribution by uncertainty in PDOF between models
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The difference between the effect of uncertainty in the PDOF is clearly dependent on
impact configuration. The green bars in Figure 6.18 show the overall uncertainty at the
Smith and Noga level of £20° At this level of uncertainty the Monte Carlo simulations
overestimate the uncertainty calculated by the analytical model 60° front to side
impacts by 2 — 4%. However in the 90° front to side impacts the Monte Carlo

simulation underestimates the analytical model by 7 — 9%.

As outlined previously uncertainty in the PDOF affects the equation used to calculate
Av in two ways. One effect is that variation in PDOF alters the value of h which in turn
affects 6. The second effect is that variation in the PDOF alters E through the energy
adjustment factor. The overall effect on the crash equation [equation (2.24)] is that
changes in 6 and E can add constructively or partially cancel each other as was shown
previously when considering car to barrier collisions. This correlation between the E
and 0 is not included in the analytical model and can therefore can be expected to

affect those results. Eliminating the effect of 6 and E separately in both the analytical
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and Monte Carlo models allows the effect of variation in PDOF on each parameter to
be examined. A comparison between the contribution to uncertainty predicted by both

models for the parameters 6 and E separately are shown in Figure 6.19 and Figure
6.20.

Figure 6.19: Comparison of PDOF contribution to uncertainty (6 only)
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Figure 6.20: Comparison of PDOF contribution to uncertainty (E only)
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If the parameters § and E were completely independent the combined response would
be the sum of the effects shown in Figure 6.19 and Figure 6.20. The fact that the
actual response is as shown in Figure 6.18 indicates the correlation between the two
parameters. It is clear too that the major contributor to overall uncertainty is due to the
energy adjustment factor as shown in Figure 6.20. For direct comparison with the
analytical model and existing studies in this area, the energy adjustment factor used
here is the commonly used factor proposed by McHenry [65] and shown in equation
(5.11). In the results presented in Appendix L the effect of equation (5.11) is
unconstrained. As discussed in Chapter 4, the energy adjustment proposed by
McHenry is normally constrained so that it does not exceed 2.0 Constraining the
Monte Carlo simulation in a similar manner reduces uncertainty in the 60° front to side
impacts substantially, as it did with the analytical method described in the previous
Chapter. As with the analytical model, such a constraint has little effect on the other

impact configurations. This result is shown in Figure 6.21

Figure 6.21: Overall uncertainty grouped by impact type
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As shown in Figure 6.21 the contribution to uncertainty by PDOF using a constrained
energy adjustment factor shows some dependence on impact configuration as
previously noted. Figure 6.22 shows a more detailed analysis of this effect with varying
levels of uncertainty in the PDOF. Thus a +20° uncertainty in the PDOF suggests a

contribution of between 5 to 8% to overall uncertainty and a contribution of between 10
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to 13% for front to side (FTS) impacts. The contribution made by uncertainty in the

PDOF is smaller for front to front (FTF) and front to rear (FTR) impact configurations.

Figure 6.22: Contribution by PDOF to total uncertainty grouped by impact type
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The contribution made by uncertainty in the PDOF tends to dominate overall

uncertainty. It is instructive therefore to consider the contribution to uncertainty made

by all the parameters excluding uncertainty in the PDOF.

Figure 6.23 shows a

comparison of the overall (constrained) uncertainty including and excluding the effects

of uncertainty in the PDOF.

Figure 6.23: Overall uncertainty including and excluding PDOF by impact type
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In this analysis front to side (FTS) impacts remain significantly more sensitive than front
to front (FTF) or front to rear (FTR) impacts whether or not the PDOF is included in the
analysis. The contribution made by variance in the other parameters accounts
suggests that even if uncertainty in the PDOF were to be eliminated completely, FTS
impacts appear to have an overall uncertainty of around 11 — 12% whereas FTR and
FTF impacts have an uncertainty of around 7 — 9%. It is also noted that the slight ~1%
difference between the FTS 60° and 90° impacts appears to be due to the inclusion of
uncertainty in the coefficient of restitution (e;) for the three FTS 90° impacts.

6.6 Determining overall uncertainty per-collision

The ultimate aim in forensic collision investigation is the determination of the vehicle
speeds in a particular collision. For other purposes it may be sufficient to determine a
probable range of results for a statistically large data set. For forensic work however,
the actual speeds and associated uncertainty is required. This theme is developed in
the next Chapter, where actual vehicle speeds are determined. In this Chapter

however the uncertainty associated with the change in velocity is under investigation.

Figure 6.24: Comparison of overall uncertainty (constrained PDOF)
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Figure 6.24 shows a direct comparison between the overall uncertainty using the

analytical approach in the previous Chapter and the Monte Carlo method for each of
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the RICSAC test collisions. When grouped by impact type the differences become

more apparent as shown in Figure 6.25

Figure 6.25: Comparison between models by impact type (x20° PDOF)
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Although the FTF and FTR impacts produce very similar results (about 0.4%), there

remains a difference between the results obtained from each of the models in the front

to side impacts (3 — 6%). This difference can be alleviated by reducing the uncertainty

in the PDOF to £10° as shown in Figure 6.26

Figure 6.26: Comparison between models by impact type (+10° PDOF)
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Reducing uncertainty in the PDOF to +10° reduces the difference between the
analytical and Monte Carlo models. It is noted that the remaining differences in the 60°
FTS impacts (about 3%) appear to be due to the use of the constrained energy
adjustment factor described previously in section 5.5.2. It is apparent that the
constraint applied in this section reduces the variability in the adjustment factor
significantly more than the corresponding constraint applied in the Monte Carlo model.
It appears that this is due to the way in which the constraint described in equation
(5.17) applies equally to truncate both the upper and lower extents of variability in the
adjustment factor. For example, in RICSAC 7 the nominal adjustment factor for vehicle
2 is found to be 1.85 The non-constrained approach produces a standard deviation for
the adjustment factor of 0.3. However the constrained approach reduces the standard
deviation in the adjustment factor to around 0.08. This subsequently limits the
uncertainty in the crush energy for vehicle 2 to +8% as compared with +32% in the
unconstrained version. The corresponding constrained uncertainty in crush energy
from the Monte Carlo method is approximately +28% Where this constraint is not
applicable, such as for vehicle 1 in the same collision, the analytical model provides a
limit on uncertainty in crush energy to £7.9% whereas the Monte Carlo model suggests
+8.6%; a much closer correspondence. It may be prudent therefore to consider further

work on the analytical constraint in an effort to resolve these differences.

6.7 Summary

These results here suggest that front to side (FTS) impacts are inherently less accurate
and therefore produce a greater range of overall uncertainty than front to front (FTF) or
front to rear (FTR) impacts when using the same variance in input parameters. The
reasons for this are complex and are dependent on a combination of the effects
explored in section 6.4. The main effects include the uncertainty in crush, the
contribution to uncertainty by the A and B coefficients each of the terms in the crush
damage equation and the effect of variability in the PDOF. All of these parameters
respond in a non-linear manner and it has not been possible to determine a suitable

correlation between any one factor and overall uncertainty.

Assuming Smith and Noga’s [108] input uncertainties, overall uncertainty in DeltaV is
about 15 — 17% for front to side impacts reducing to 9 — 12% for front to front or front to

rear impacts. The largest individual contribution is that due to uncertainty in PDOF.
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This is consistent with Smith and Noga’s earlier conclusion and this new analysis
generates significant new results. A reduction in this one parameter therefore is likely
to have the greatest overall effect. Reducing uncertainty in the PDOF to +10° reduces
overall uncertainty to 13 — 15% for front to side impacts and 8 — 10% for end to end
impacts.

It should be appreciated however that this analysis is based on a relatively small data
set with only two or three test collisions in each category. Larger data sets may
produce different results. Additional work may be considered in this area to validate
the conclusions reached.

The analytical model produces results comparable to the Monte Carlo method. It is
clear too that the two methods produce closer results if the uncertainty in PDOF is
minimised. In the next Chapter a method is presented which allows the actual
velocities of vehicles to be determined. A useful side effect to this method is that it
enables better estimates to be made of the PDOF values applicable in a particular
collision. The PDOF values used in this and the previous Chapter were determined
using this technique. The technique essentially involves adjusting the PDOF values so
that predicted post-impact trajectories match those determined from field data. It is
found that even small variations in PDOF (around 0.1°) can produce significant
changes in the post-impact trajectories so that estimates of PDOF to within +1° are

possible.
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Chapter 7

Determination of actual vehicle

speeds from change in velocity data

7.1 Objectives

In this Chapter the work of the previous Chapters is extended and a method is
developed whereby the actual speeds of the vehicles in a collision may be determined
from change in velocity data. For practical collision investigation purposes it is
anticipated that change in velocity data will generally be derived from the CRASH
equation as described earlier. However change in velocity data from any other suitable
source can be used. The method relies solely on conservation laws and is also
applicable to situations where the coefficient of restitution is non-zero. An extension to
the method is also developed which allows a better estimate to be made of the

principal directions of force applicable to each vehicle.

The material presented in this Chapter forms the basis of a paper published in the
Journal of Automobile Engineering Proc IMechE Part D 225 (1) (2011).

7.2 Introduction

As outlined in Chapter 2 the scientific reconstruction of road traffic collisions often
requires the calculation of the speeds of vehicles involved. An estimate of the actual

vehicle speeds is of prime importance to forensic practitioners as for the courts the
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speed of the vehicles is usually a key factor in the allocation of liability or in the
decision about criminal offences. The determination of actual speeds have traditionally
centred on the analysis of tyre and other marks on the road surface to model the
behaviour of the vehicles involved and their speeds. With the increased use of anti-
lock braking systems (ABS), tyre marks are becoming less common. The presence of
water on a road surface also decreases the chance of suitable tyre marks being found
on the road surface. In situations where there are no tyre marks, any model based on
the analysis of those marks cannot succeed and the determination of pre-impact
speeds in particular becomes more problematic. There are a variety of methods that
provide information on vehicle speeds in the absence of tyre marks, such as the
determination of vehicle speed from pedestrian throw distance as discussed by Evans
and Smith [106].

In the context of this work, a determination of the change in velocity of vehicles can be
made using the CRASH algorithm described in Chapter 2. As shown earlier the
CRASH algorithm can be considered as two distinct algorithms, one to determine the
energy absorbed in causing deformation and the second to determine the change in
velocity of each vehicle. The CRASH algorithm has the advantage that it does not rely
on the presence of residual marks on the road surface, but requires only that there is
crush damage suitable for measuring. The main disadvantage however is that the
CRASH method only provides the change in velocity of each vehicle and not the actual

velocities.

Normally the pre-impact direction of travel of each vehicle are also known or can be
estimated for a particular collision. The method developed in this Chapter shows how
this information together with knowledge of the change in velocity of each vehicle can
be used to derive the actual pre and post impact velocities of both vehicles. This
method is derived from an analysis of the collision based on the conservation laws of
linear and angular momentum and includes restitution. It has the advantage of not
being limited to any particular method by which the changes in velocity are generated.
So it can be used as well with in-car accident data recorders that provide data on

change in velocity as impact phase models such as CRASH.

Models for the impact phase of collisions commonly make a number of assumptions
and these are described in Chapter 2. The same assumptions are also adopted here
and are summarised below. First tyre and other external forces are assumed to be

negligible during the impact, so that momentum is conserved. Second, the vehicle
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masses and moments of inertia are maintained throughout the collision. That is the
deformations caused by the collision do not significantly change the moments of inertia
and the masses of the vehicles are not significantly changed, for example, by parts of a
vehicle becoming detached as a result of the collision. Third, the time-dependent force
can be modelled by one resultant impulse which acts at some point on or in the
vehicles. Similarly as with CRASH and the other impact models described in this work,
the discussion here is restricted to two vehicle planar collisions. For collisions involving
significant vertical motion, this analysis will need modification. In the next section
planar collisions are analysed to develop a new model to calculate the change in

velocity of vehicles and also to derive expressions for the closing speed.

7.3 Planar Collisions

In this section the conservation laws of momentum are used to derive expressions for
the change in velocity (Av). Smith [105] shows how the equations for Av can be
derived from the conservation of momentum and conservation of energy without
recourse to a specific model for how the energy absorbed by the vehicles is related to
damage. In this section an alternative derivation of the equations for Av is also
presented. Rose et al. [95] use a heuristic method based on McHenry’s spring model
[65] to obtain some interesting and helpful results for collisions. Also in this section,
new equations are developed which provide expressions for the closing speeds which
includes the energy absorbed by the vehicles. Such an analysis provides a rigorous
and general basis for the results. However more importantly the analysis yields a
yields new results. Equations (2.1) - (2.4) described in Chapter 2 form a system of four
equations describing the conservation of momentum. These equations lead to an
expression relating the two changes in velocity, i.e.

AV, =—Av, T2 (7.1)

m,
In addition, the change in rotation of the two vehicles can be expressed as

h
Aw, = %Avl, Aw, =—2Av,. (7.2)

T2
ki K
Lower case symbols are used for motion at the centre of mass. Upper case symbols

are used to distinguish motion at the point of application of the impulse so that U, is
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denotes the component of the vehicle’s velocity before impact in the direction of p at

the point where the impulse P acts then
Ulp =U-p+ha, U2p =U,-p+hao, (7.3)

where p is a unit vector in the direction of P. Similarly V, may be used to describe the

component of vehicle’s velocity after impact in the direction of p
Vip =V p+hQ, V=V, - p+hQ,. (7.4)

The coefficient of restitution (ep) for the vehicles in the direction of P at the point where

the impulse acts may be defined so that

V,, —Vy, =—€,(U,, ~U,)). (7.5)

p Vip T

The substitution of equations (7.2) to (7.5) into equation (7.1) produces
m,(1+e,)U,, —U,,) = (M +my)Av, + mhAw, —m,h,Aw,. (7.6)
Further substitution of equations (7.1) and (7.2) into equation (7.6) then produces

_ m, (1"' ep)(UZp _Ulp)
(M6, +m,5,)

A (7.7)

where

2

hy
2|
2

2
5l:l+hl 0, =1+

pel (7.8)
1

Using a similar notation to that used by Brach [11] it is noted that result (7.7) can also

be written as

L Mre,)Uy, ~Uy)

\ Am, (7.9)
where
=12 =12
A=1+ nr:]ltlz +rrnn—rl]<22’ (7.10)
1 22
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m—_m (7.11)
m, +m,

Results (7.7) and (7.9) describe the changes in velocity at the centre of mass of the
vehicle in terms of the closing speed of the points of contact between the vehicles.
Since the closing speed of the vehicles is unknown for the majority of collisions, such a
result is of limited use. However following a method similar to that of Smith [105] it is
possible to determine the closing speed in terms of the total work done in causing
crush to the vehicles as a result of the collision. This allows the unknown closing
speed parameter in equation (7.7) to be replaced by a value which can be calculated
from post-impact data. The work done in causing crush can be estimated using the
methods described by McHenry [65], as described earlier, or any other suitable
method. The total work done in causing crush (crush energy) to the vehicles as a
result of the collision can be expressed as

E=E +E, (7.12)
where
E, =mAv,(u,- p—u,- p)—%ny(Avl)Z[1+mﬂj, (7.13)
2
h?  mh
E, = mAy, (hw, —ha)—im (Av,)? [—2 + —sz . (7.14)
kl m2k2

Equation (7.12) can be solved for the closing speed Uy, — Uy, to yield result (7.15)

E N Av, (M0, + M,o,)
MAV, 2m, '

Uz _Ulp =

; (7.15)

As described by Smith [105], the substitution of U, — U, from result (7.15) into

equation (7.7) leads to the commonly used formula to calculate velocity change

Ay =\/ 2Em, (1+e,) 7.16)

m, (M3, +m,8,)(1-e,)

Equations (7.7) and (7.16) both describe the change in velocity at the centre of mass

(Av) along the line of action of the impulse. From equations (7.3) and (7.4) the change
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in velocity at the point of application of the impulse in the direction of p (AV,) may be

described by the expression
AV, =Av-p+hAw. (7.17)
The substitution of equations (7.2) and (7.8) into equation (7.17) produces the result
AV, =6 (Av-p). (7.18)

Equation (7.18) shows that along the line of action of the impulse P, the change in
velocity of the point of application is equal to the product of the change in velocity at the
centre of mass and the scalar value DeltaV. It should be noted that in addition to the
change in velocity along the line of action of the impulse there is also a tangential
change in velocity at the points of action ( AV, ) due to the consequent change in
rotation as defined by equation (7.2). If U; and V, are used to denote the component
of the vehicle’s velocity before impact in a direction perpendicular to p at the point

where the impulse P acts then
U, =[uxp|+he, V,=|vxp/+hQ (7.19)

where h, is related by Pythagoras to h as shown by equation (7.20) where d is the

distance from the point of application of the impulse to the centre of mass
d? =h®+h?. (7.20)

From Newton’s laws of motion there can be no change in velocity at the centre of mass
perpendicular to the impulse P. Thus any change in velocity of the points of action
tangential to the impulse can only be due to a change in the angular velocity of the
vehicle. The change in velocity tangential to the direction of the impulse for each

vehicle can now be obtained by equation (7.21)

AV, =h, Am, AV, =h, Aw,. (7.21)

7.4 Closing Speeds

The changes in velocity of each vehicle at the centres of mass and at the point of
application of the impulse are described in the previous section. In this section the total

closing speed of the vehicles is derived as the vector sum of the closing speed in the
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direction of the impulse and the closing speed perpendicular to the impulse. A method
is then described which uses the total closing speed to determine the actual speeds of
the vehicles at impact. From result (7.7) an expression for the closing speed along the
line of action of the impulse at the point of action of the impulse can readily be obtained

T Av, (M0, + m,o,) .
PP m,(1+e,)

u, (7.22)

Alternatively, as Smith [105] demonstrates, the total energy absorbed in the collision

may be expressed as

E=E, +E, (7.23)
where
My 2
EA - [Z_J (AV1) (m152 + m251) ) (7-24)
m,
Ee = rnlAvl(VZ P+ h2Q2 -V, p+ h1Q1) : (7.25)

The closing speed in the direction of P can now be found by substituting equations
(7.4) and (7.5) into equation (7.25) to yield

E. =-emAv, (U, -U,). (7.26)

Equations (7.18), (7.24), and (7.26) can then be used in equation (7.23) to produce

U,, U, = 2E(mo, + m2251) . (7.27)
m1m2 (1_ep)

Equation (7.27) is similar to that derived by Rose et al [95] but is more general as it
includes the effect of restitution. Rose et al restrict their subsequent analysis to one
dimension along the line of the impulse. As highlighted previously, it must be noted
that there is also a tangential change in velocity at the point of application of the
impulse due to the change in rotation. The component change in velocity for each
vehicle tangential to the impulse where the impulse acts is given by equation (7.21).
The tangential change in velocity for vehicle 1 can be subtracted from that for vehicle 2

to yield
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AV, —AV, =h, Aw,—h, Aw,. (7.28)

Substitution of equations (7.1), (7.2) and (7.19), into equation (7.28) produces

h.h,  hyh
AVZt_AVlt:_mAVl{W-Fﬁ : (7.29)

Equation (7.7) can be substituted into (7.29) to produce

AV, —AV, —mm, (1+e) [ h,hy " h,h, } _ (7.30)

Uy —Uy) (M3, +m,8) | mk?  myk;
This may be written in a format similar to that of equation (7.9) to yield

(\/Zt _Vlt) _ _E
—(Uzt—Un)_l rA(1+ep). (7.31)

where A and M are given by equations (7.10) and (7.11) respectively and

B= { ”;:5&?1 + r:'zligz } (7.32)
1 272

r— (U2t_Ult) (7.33)

(UZp _Ulp) .

Analogously to equation (7.5), and in a similar manner to that used by Ishikawa [43] a

tangential coefficient of restitution ( e,) can be defined such that
Vo =V ==&, (U, —Uy). (7.34)

Substitution of equation (7.34) into equation (7.31) produces a result showing the
relationship between the tangential closing speed and the closing speed along the line

of action of the impulse
B
(U2t _Ult)(1+et) = K(UZp _Ulp)(l+ep)' (7.35)
The coefficient e; will be zero when relative tangential motion between the two points of

application ceases at or before separation of the vehicles. It is suggested that this

situation will occur in the majority of vehicle to vehicle collisions so that it may be
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assumed that e, is zero leading to a simplification of the following equations. Where e,
is zero (i.e. Vi = V), equation (7.29) becomes
h,.h
U, Uy, =mAy, hhhlz +—2 22 - (7.36)
mlkl m2k2
This formula gives the component of the closing speed perpendicular to the direction of
the PDOF. This formula gives the tangential closing speed component in terms of Av
and includes the effects of restitution along the line of action of the impulse (e,) via

equation (7.16). This is a key equation in the calculation of the closing speeds and so

of the vehicles speed.
In addition, where e is zero equation (7.35) can be written

rA+B(L+e,)=0. (7.37)

As explained in Chapter 2, Brach [11] develops his Planar Impact Mechanics model
(PIM) to demonstrate how using the conservation of momentum, a model can be
derived which models the behaviour of vehicles during the impact phase. His model
partitions the impulse into normal and tangential components which are related to each
other by an impulse ratio g and also includes a normal coefficient of restitution.
Although the choice of impact plane is not critical in his model, the choice of impact
plane effectively determines the impulse ratio i1 and the coefficients of restitution. A
critical impulse ratio po is also defined by Brach as the impulse ratio at which a
common tangential post-impact velocity may be determined. With an orientation of the
impact plane perpendicular to the impulse as defined in Chapter 2, then there can be
no tangential impulse component so that Brach’s critical impulse ratio o will also be

Zero.

It is noted that the left hand side of result (7.37) is identical to the numerator in Brach’s
equation to determine the critical impulse ratio p, This indicates that Brach’s model
and the model presented here both predict a common tangential post-impact speed
with the same initial conditions and orientation of the impact plane. Collisions where
relative tangential motion continues beyond separation implies a non-zero tangential
coefficient e, Such a non-zero tangential coefficient will occur for example in

sideswipe type collisions. Without loss of generality, the substitution of equation (7.34)
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into equation (7.21) yields an expression for the closing speed perpendicular to the

impulse
U2t _Ult = (hlt Aa)l _h2t Aa’z)/(1+ et) (7-38)

The total closing speed ( Ug ) can now be expressed as the vector sum of the
component results from equations (7.22) [or (7.27)] and (7.38)

Up =(Uy, ~Up,)° + (U, —U,,)? (7.39)

Of note is that an alternative to result (7.39) can be determined by using result (7.35).
Using this result the total closing speed can be expressed without explicit reference to
the tangential closing speed to give

, B*(1+e,)’
UR = (U2p _Ulp) :].-FW-’_&[)2 (7.40)

The angle of the closing speed vector to the impulse P ( ) can be found from equation
(7.33)

tanﬂ:r:(Uzt_Ult)/(UZp_Ulp) (7.41)

Using result (7.35), angle g can also be defined solely in terms of A and B and the two

coefficients of restitution e, and e,
tan f=—— (7.42)

In CRASH analyses it is usual to define a principal direction of force (PDOF) for each
vehicle as the direction in which the impulse acts so as to cause the observed damage.
Brach [11] suggests that the requirement to estimate the PDOF is a major weakness in
CRASH and the work of the previous Chapters shows that an accurate estimate of the
PDOF is important in reducing uncertainty. A new method is presented later in this
Chapter which permits a more realistic estimate to be made of the actual impulse and

therefore the PDOF values applicable to each vehicle.

The impact geometry of a typical collision is illustrated in Figure 7.1 where two vehicles

V1 and V2 collide obliquely as shown in the insert.
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Figure 7.1: Impact Configuration

Defining the PDOF values for each vehicle uniquely determines the angle between the
two vehicles at impact by Newton’s Third Law. This value (a) can be determined from
the PDOF values (6) as

a=r-6,-06, (7.43)

It follows that the angle (1) between the initial heading of vehicles and the closing

speed can then be described by the expressions
A=p+6, AL=r-a-A4=6,-p. (7.44)

When there is no pre-impact rotation by either vehicle, the closing velocity of the points
of action for each vehicle must also be the closing velocity of their centres of mass.
The absence of significant pre-impact rotation is a common feature in many collisions
and the simplifying assumption that pre-impact rotation is zero, or at least negligible,
does not severely limit the number of collisions amenable to this technique. If there is
significant pre-impact rotation, then this method cannot distinguish between the closing

velocity due to the translational motion of the vehicles or that due to rotational motion.
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If there is pre-impact rotation therefore, additional information will be required to

resolve this difference.

Consideration of the triangle of vectors formed by the closing speed vector and the
initial velocity vectors, indicates that the Sine Rule can be used to determine the actual
speed of the vehicles. Where there is no pre-impact rotation as described earlier,
result (7.45) determines the initial vehicle speeds where « is the angle between the two

vehicles at impact

_ Ugsin(4)

_ U, sin(4,) (7.45)
sina ' '

U, =u -
2 e sina

U =u
Once the pre-impact velocities have been found it is straightforward to determine the

post-impact velocities using the change in velocity ( Av ) for each vehicle.

This method has been used with the RICSAC tests to compute the initial speeds.
These calculations are discussed in more detail in following sections. It should be
emphasised that no knowledge of how the values for Av are obtained is assumed in
this derivation. As a result equation (7.45) is equally applicable to any model yielding

the changes in velocity of each vehicle.

7.5 Discussion

7.5.1 Practical Considerations

Using this technique requires that some way is available to determine the changes in
velocity sustained by each vehicle. These values may be calculated using any suitable
force-crush model, or generated by some other method, such as from in-car accident
data recorders. In the situation where a data recorder was fitted to only one vehicle,
equation (7.1) may allow the Av of the other vehicle to be estimated from the relative

masses of each vehicle.

A commonly used model used to generate values for Av is that provided by CRASH.
As demonstrated previously the CRASH model uses a linear force-crush model to
determine the work done in causing crush to each vehicle in a collision (E; and E; )
(See e.g. Day and Hargens [22] or McHenry [65]) Practical considerations for

measuring vehicles are described more fully by Neades and Shephard [75] and are
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outlined in Chapter 3. CRASH based programs calculate the positions of the damage
centroids using the geometry of the deformed areas and these are frequently used to
define the points of application of the impulse P. The shape of the damaged area is
also used to assist in estimating the PDOF. Ishikawa [42] provides an alternative
method to estimate the PDOF for the vehicles from the damage profiles which may be
helpful in determining these values. He proposes a method whereby the impact centre
is assumed to be the mid-point of the contacting surfaces at the point of maximum
deformation. The PDOF is then assumed to lie along a line perpendicular to the line of
the contacting surfaces through the impact centre. The difference between these two

methods is usually small and the choice of PDOF is discussed further in section 7.7.

Essentially the CRASH algorithm consists of two distinct processes. One to determine
the crush energy and a second process where those energy values are utilised to
determine the changes in velocity. The derivation here does not rely on any particular
deformation law and describes the second process.

7.5.2 The effect of restitution

In the majority of substantial vehicle to vehicle collisions, the points of application of the
impulse reach a common velocity tangential to the impulse so that Vy = Vy. If the
coefficient of restitution in the direction of the impulse ( e, ) is also zero this implies that
the points of action reach a common velocity during the collision phase. This is the
common velocity assumption present in many of the CRASH derivations. As described
previously, Smith [105] shows that the common velocity assumption may be relaxed
somewhat by the inclusion of a non-zero coefficient of restitution along the line of
action of the impulse. This leads to equation (7.16) which can be viewed as an
extension to the standard or zero restitution CRASH model. If the coefficient of
restitution in the direction of the impulse is greater than zero, then the points of
application of the impulse reach a common velocity along the line of action of the
impulse at the moment of maximum engagement. At the moment of maximum
engagement the maximum amount of energy has been absorbed by the vehicle
structures. If energy is then returned to the vehicles due to restoration of the vehicle
structure, the velocities of the vehicles continue to change beyond that required simply
to reach a common velocity at the point of application of the impulse as outlined by
Brach [11].
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In situations where the points of action do not reach a common velocity, such as in a
sideswipe type of collision, the common velocity assumption becomes invalid. In such
situations it is likely too that the impulse no longer dominates the tyre forces so that
there is also unlikely to be any major engagement between the vehicles and a
corresponding lack of residual crush to the structural members of vehicles. In such
collisions any assumption that there is a common tangential post-impact velocity (i.e.
V2 = Vyy) is no longer valid.

Smith and Tsongas [110] report a series of staged collisions where they found that the
coefficient of restitution was between O and 0.26. In general, they report that lower
values of restitution tend to be found as the closing speed increases. Little information
is available to indicate their methodology but it seems likely that these collisions were
central and that restitution was calculated along the line of action of the impulse. Wood
[125] also suggests a similar relationship based on a series of full scale crash tests with
a maximum restitution of about 0.3 More recently Rose, Fenton and Beauchamp [94]
investigated the effects of restitution for a single type of vehicle (a Chevrolet Astro van)
in head-on collisions with a barrier. Here they found that the coefficient of restitution
varied from 0.11 to 0.19 for impact speeds around 47 — 57 kmh™. Cipriani et al [21]
studied a series of vehicle to vehicle collinear impacts with low speeds up to 7 ms™ and
discovered that restitution varied from about 0.2 to 0.6 with the lower values found for
higher impact speeds. At lower closing speeds it is apparent that restitution effects

can be significant.

The use of a positive coefficient of restitution e, increases the calculated closing speed
and as a result tends to increase the pre-impact speeds determined for each vehicle.
Minimum pre-impact speeds are therefore calculated when e, is zero, which as
previously noted is likely to be close to the actual value for higher speed collisions.
Determining the minimum impact speed for each vehicle is often of prime importance

particularly in criminal forensic collision investigation.

7.6 Example Collisions

7.6.1 Standard Energy Adjustment Factor

This model has been applied to the data from the Research Input for the Computer

Simulation of Automobile Collisions full scale tests (RICSAC) [51] using the standard
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energy adjustment factor defined by McHenry [65] and examined in Chapter 4. An
analysis using the new energy adjustment factor also defined in Chapter 4 is presented
in the next section. This is the same data set as used in earlier Chapters investigating
the overall accuracy of the CRASH algorithm. As highlighted earlier it is apparent that
in several of the tests there are significant discrepancies between the recorded
damage profiles and the photographs of the damage. These discrepancies result in
very large force differences in the calculations. This is particularly evident in tests 2, 6
and 7 where force differences of 469%, 577% and 608% respectively were obtained.
As detailed earlier, the data from these tests has been adjusted in an attempt to rectify
some of the more obvious discrepancies. The changes in velocity for each of the

collisions is show in Appendix F.

As an illustration of the entire process, Test 8 of the RICSAC series is analysed in
detail. Test 8 of the series was a set up to be representative of a 90° intersection
collision with both vehicles travelling at 9.2 ms™ at impact. A CRASH damage analysis
shows that with the PDOF values as recorded, the work done in causing deformation to
the vehicles was 63 kJ. Using the recorded PDOF values and a zero coefficient of
restitution (e, = 0), the method described here uses equation (7.16) to determine the
speed change in the direction of the PDOF. Equation (7.27) gives the closing speed in
the direction of the impulse as 12.83 ms™. Equation (7.38) gives the closing speed
perpendicular to the impulse as 5.86 ms™. These component results can be used in
equation (7.39) to determine the total closing speed as 14.1 ms™. With this
configuration the angle A, is 24.5° and angle « is 90°. Using equation (7.45) the pre-
impact speeds are found to be 8.18 ms™ for vehicle 1 and 11.49 ms™ for vehicle 2.
From these values and the calculated changes in velocity from equation 16 the post-

impact motion can be determined from the definition of Av.

Diagrams in Jones and Baum [51] show that for Test 8 the centres of mass of each
vehicle moved off along a common post-impact direction of approximately 40° - 50° to
the original direction of travel of vehicle 1. The calculated post-impact motion of the
vehicles for Test 8 with a zero coefficient of restitution shows that the centres of mass
of the vehicles do not follow the recorded post-impact direction of travel. Indeed when
the coefficient of restitution is close to zero the vehicles appear to pass through each
other as shown in the first part of Figure 7.2. This cannot be a realistic scenario for
this type of impact configuration. A more realistic model can be achieved however by

using a non-zero coefficient of restitution e,. The post-impact motion predicted for
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RICSAC Test 8 using coefficients of restitution of 0.0 and 0.3 are shown in Figure 7.2
to illustrate this effect. The PDOF for each vehicle and the coefficient of restitution are
difficult to determine accurately. Various reasonable values were tried and the best
ones selected on the basis of the force balance and post-impact direction of travel.
The optimum values gave pre-impact speeds of 8.9 ms™ for vehicle 1 and 9.0 ms™ for
vehicle 2 which underestimate the measured speeds by 0.3 and 0.2 ms™ respectively.

Figure 7.2: RICSAC Test 8: Motion of centres of mass with varying restitution

Y Y

e

e, =0.0 e, =0.3

The remainder of the RICSAC tests can be treated in a similar way to calculate pre-
impact speeds for these tests. Early versions of the CRASH measuring protocols
indicated that crush damage should be measured at the level of maximum intrusion.
Later versions of CRASH suggest that crush damage should be measured at the main
load bearing level, i.e. at bumper and sill level as described in Chapter 3 and in Neades
and Shephard [75].

Comparison between the photographs and the recorded measurements suggest that
the early measurement version was used to determine the damage profiles. For
example the photographs of vehicle 2 in both tests 1 and 2 show considerable intrusion
at about mid-door level but much less intrusion at sill level. The author has examined
and measured scores of damaged vehicles. Based on this experience, photographs
and the measurements an estimate of the likely crush at the load bearing level have
been made for each vehicle. The adjustments made vary dependent on the particular

damage to each vehicle. Although such a process is somewhat rough and ready the
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resulting measurements provide a better approximation of the damage profiles to the

stiff parts of the vehicles.

In addition the PDOF values for each vehicle were adjusted so that although the
configuration of the vehicles at impact remained constant, the post-impact directions of
travel for the centres of mass matched those recorded for each of the tests as shown in
the diagrams presented by Jones and Baum [51]. Three 90° impact tests were
conducted (Tests, 8, 9 and 10). As outlined previously in each of these collisions a
coefficient of restitution of 0.3 has been applied so that a reasonable match was
achievable with the recorded post-impact motion. Note that using a coefficient of 0.3
produces a reasonable match for each of these three tests. Further adjustment around
0.3 can produce a marginally closer fit but with little change in the calculated closing
speed. The actual adjustments made are detailed in Table 5.7 and

Table 5.8. The results from this analysis are shown in Table 7.1.

Table 7.1: RICSAC Closing speed results — Standard energy adjustment (ms™)

. Measured Pre- Calculated Pre-

Test Calculated Av Total Closing impact Speed impact Speed
V1 V2 Speed V1 V2 Vi V2

1 5.3 7.9 16.0 8.8 8.8 9.2 9.3
2 8.4 12.6 25.6 14.0 14.0 14.8 14.8
3 3.0 4.8 8.5 9.4 0.0 8.5 0.1
4 6.6 10.3 17.6 17.2 0.0 17.6 0.2
5 5.9 10.7 17.3 17.7 0.0 17.3 -0.4
6 5.2 8.5 17.3 9.6 9.6 10.0 10.0
7 6.1 13.2 24.0 13.0 13.0 13.9 13.9
8 6.6 6.2 12.6 9.2 9.2 8.9 9.0
9 6.7 3.1 12.2 9.4 9.4 8.6 8.6
10 10.9 5.3 18.6 14.8 14.8 13.1 13.2
11 9.7 6.1 16.3 9.1 9.1 8.0 8.4
12 16.0 11.1 27.1 13.6 14.0 13.6 13.7

*Coefficient of restitution e, = 0.3

A graph summarising these results comparing the measured pre-impact speed of each
vehicle with the pre-impact speed calculated by this method is shown in Figure 7.3.
(Note that the stationary target vehicles used in tests 3, 4 and 5 have been omitted

from the results.)
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Figure 7.3: Percentage error of calculated and actual pre-impact speed
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These results indicate that the pre-impact speeds calculated using this technique for
the RICSAC tests range from -12% to +8% with a mean underestimate of 2%. Smith
and Noga [107] note that in the collisions they considered, CRASH tended to
underestimate Av with a mean error of +13.8% for higher speed collisions (40 — 48
kmh™) and +17.8% for lower speed collisions (16 — 24 kmh™). The results here seem
also to indicate that the work done in causing crush has been underestimated. One
source of error may be that in several of the RICSAC collisions the crush damage
profile recorded does not seem to replicate the crush profile as shown in photographs.
Although the damage profiles were adjusted in this analysis to better replicate the
damage profiles, with more representative measurements a better correspondence to

the actual speeds is to be expected.

In the Lotus crash tests [45] vehicles were crashed into stationary target vehicles. A
similar analysis of the crash data as performed for the RICSAC tests reveals a
correspondence of calculated impact speeds to actual speeds of between -9.6% to
+3.7% A detailed analysis of the likely sources and magnitude of error is presented in
Chapters 5 and 6.
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7.6.2 New Energy Adjustment Factor

The data from the RICSAC tests has also been applied using the new energy
adjustment factor defined in Chapter 4. The development of this factor in Chapter 4
also resulted in the development of a method to transform coefficients of restitution to
alternative orientation of the impact plane. This permits the analysis of those collisions
where a non-zero coefficient of restitution parallel to the impulse was required. The
tests affected by this adjustment are tests 8, 9 and 10. The results using the new
adjustment factor for all the RICSAC tests are shown in Table 7.2. Further details of

this analysis are provided in Appendix M

Table 7.2: RICSAC Closing speed results — New energy adjustment (ms™)

Calculated Av | Total Closing Measured Pre- Calculated Pre-

Test Speed impact Speed impact Speed

Vi V2 Vi V2 V1 V2

1 5.3 7.9 15.6 8.8 8.8 8.97 9.00
2 8.4 12.6 24.2 14.0 14.0 13.97 14.02
3 3.0 4.8 8.4 9.4 0.0 8.37 0.00
4 6.6 10.3 17.6 17.2 0.0 17.56 0.01
5 5.9 10.7 17.3 17.7 0.0 17.35 0.00
6 5.2 8.5 16.3 9.6 9.6 9.44 9.44
7 6.1 13.2 22.5 13.0 13.0 13.02 13.00
8’ 6.6 6.2 14.5 9.2 9.2 10.23 10.28
9 6.7 3.1 14.0 9.4 9.4 9.89 9.89
10° 10.9 5.3 21.3 14.8 14.8 15.07 15.11
11 9.7 6.1 16.2 9.1 9.1 7.95 8.31
12 16.0 11.1 27.1 13.6 14.0 13.53 13.63

*Coefficient of restitution e, = 0.3

The results using the new energy adjustment factor produce a slightly closer set of
values to those calculated using the standard energy adjustment factor. Overall the
accuracy is just under 0.2% with a standard deviation of 5.5%. A direct comparison
between the sets of results with the recorded pre-impact speeds are shown in Figure
7.4 and Figure 7.5. For clarity the comparison between vehicle 1 and vehicle 2 are

shown separately
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Figure 7.4: Comparison between energy adjustment models Vehicle 1
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Figure 7.5: Comparison between energy adjustment models Vehicle 2
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As can be seen, the overall correlation between the recorded pre-impact speed and the

calculated speed is remarkably close with both models. Although in percentage terms

the accuracy ranges up to about £12% this corresponds to inaccuracy in the actual

speeds of no more than +1.1 ms™ using the new model and one example (test 10) at
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+1.6 and 1.7 ms* for vehicles 1 and 2 respectively using the standard energy

adjustment model.

7.7 Accuracy

In this section the accuracy of this method is discussed. Three parameters are
identified as key values affecting the overall accuracy and each is considered in turn.
These are the impact angle alpha, the method used to determine Av in the first place

and the choice of the point through which the impulse acts.

The techniques developed in this Chapter cannot be applied to all collisions. As «
tends towards 0 or 180°, sin « will tend towards zero leading to a singularity in result
(47). With « at 0 or 180° therefore all that can be calculated is the closing speed of the
vehicles and not the actual speeds of either vehicle. Without additional information
concerning the pre-impact speed of one of the vehicles, it is not possible to determine
the individual speeds of either vehicle. At angles close to these extremes, any results
from result (7.45) will become sensitive to the exact angle and should therefore be
treated with caution. This is very similar to the way in which conservation of
momentum calculations become sensitive to changes in angles at near-collinear

calculations.

The most important factor which affects the accuracy of the calculations are the
inaccuracies in the method used to determine the change in velocity itself. Thus if
using CRASH to generate Av values the overall accuracy will be broadly similar to
those inherent when using CRASH. However techniques to improve the accuracy of
those calculations have been developed and outlined in this Chapter. Implicit in the
overall accuracy is the estimation of the direction of the impulse (PDOF) and also the
angle «. In CRASH this choice will also affect directly the calculation of energy
absorbed by each vehicle as explained in Chapter 6. The estimation of the direction of
the impulse determines the proportion of the closing speed allocated to each vehicle.
Thus an accurate choice is important. Figure 7.6 shows how the initial speeds of the
vehicles are affected by varying the PDOF. Data from RICSAC Test 9 is used together
with a zero coefficient of restitution. It is also assumed that the attitude of the vehicles

remains constant throughout the impact.
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Figure 7.6: RICSAC Test 9. Variation of initial vehicle speeds with PDOF
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The sensitivity of the results to the actual direction of the impulse as indicated by
Figure 7.6 suggests that a visual estimation of the direction of the PDOF may not be
sufficiently precise. This is the normal method of operation for investigators using
CRASH which requires an estimate of the PDOF for each vehicle. Investigators
commonly estimate the direction of the impulse from the pattern of damage sustained
by each vehicle. As described earlier, in real-world collisions the immediate post-
impact directions of motion of each vehicle can often be deduced from an analysis of
tyre and other marks on the roads surface. With the techniques described here, the
post-impact velocity is straightforward to obtain. Using this information it is then
possible to refine the initial estimate of the PDOF and restitution values so that the

calculated post-impact directions of travel match those recorded for actual collisions.

The value of Av is dependent on the value h for each vehicle since this factor not only
determines the change in velocity of the centre of mass, but also determines the
change in rotation Aw. This value is itself dependent upon the point chosen as the

point through which the impulse acts. Thus the choice of this point on each vehicle will
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have an effect on the calculated speeds. In CRASH calculations the point through
which the impulse acts is normally assumed to be the centroid of the damaged area.
Ishikawa [42] proposes a method whereby the impact centre is assumed to be the mid-
point of the contacting surfaces at the point of maximum deformation. He provides a
method whereby that point can be calculated. Unfortunately this calculation requires
knowledge of the impulse and post-impact rotation which are themselves affected by
the location of this point. It is apparent however that the position of this point could
vary by as much as half the crush depth. An analysis of the RICSAC tests produce
differences of less than 1 ms™ for each vehicle. As confirmed by the analyses in
Chapters 5 and 6 this suggests that the calculation of the initial speeds is not

particularly sensitive to variations in this parameter.

7.8 Summary

The method presented in this Chapter demonstrates that the pre-impact speed of a
vehicle can be determined from an analysis of the changes in velocity sustained by
each vehicle. This data can be from any suitable algorithm that provides such changes
in velocity. The technique has been applied to a series of crash tests where changes
in velocity were determined using the commonly used CRASH algorithm. Results are
presented using the standard energy adjustment factor and a new adjustment factor
both of which are described in Chapter 4. It is shown that the new adjustment factor
produces results which are slightly closer to the actual vehicle speeds than the
standard adjustment factor. However it is recognised that this is a limited data set and

a more comprehensive series of tests is desirable.

A technique has also been suggested to improve the accuracy of the estimation of the
PDOF which is required as an input parameter to CRASH. Application of these
techniques should provide more reliable results for crash investigators involved in

analysing collisions.
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Chapter 8

Conclusions

8.1 Overview

This Chapter provides a summary of the thesis and an evaluation based on the criteria
specified in Chapter 1. Suggestions are also made for future work in this area. As
outlined in Chapter 1 this thesis considers the impact phase of road vehicle collisions

and has three main aims

e To quantify factors affecting accuracy of DeltaV and predicted speeds
e To determine the relevance and accuracy of energy adjustment factors in
CRASH calculations

e To develop a method to determine actual vehicle velocities from DeltaV values

These aims have been discussed in depth throughout the body of the thesis. The main
finding of this work are summarised in the next sections. Of note throughout this work
is that CRASH can be viewed as two separate algorithms. The first is an algorithm to
estimate the amount of work done in causing crush damage (crush energy). The
second part of the algorithm uses the crush energy estimates to determine DeltaV.

The two algorithms are described in detail in Chapter 2.

Since the estimation of crush energy and the overall accuracy of the CRASH algorithm
depends crucially on crush damage measurements, Chapter 3 contains details of

measuring protocols which can be used to consistently measure that damage.
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8.2 Equivalence of impact phase models

It has been shown that the momentum models of Brach [11] and Ishikawa [43] which
do not utilise the conservation of energy are equivalent and differ mainly in the way in
which tangential sliding is treated. Both models make use of an impact plane in their
specification to partition the impulse into normal and tangential components. Chapter 2
explains how Brach uses an effective tangential sliding coefficient of friction p whereas
Ishikawa utilises a second coefficient of restitution e;. Ishikawa identified that there was
an explicit conversion between pu and e. The two momentum models also use
somewhat different coefficients. Conversion between p and e, and between the various

coefficients can be achieved using the equations listed in Appendix C.

If the impact plane is orientated so that it is perpendicular to the impulse then the
tangential impulse component vanishes. With this orientation Chapter 2 shows that
second part of the CRASH algorithm is also equivalent to the momentum only models.
It is shown that the second part of the CRASH algorithm uses only conservation laws
as described by Smith [105] and provides a new model to allow for tangential
restitution. This is an important result since it shows that any perceived differences
and inaccuracies of the CRASH model as compared to the momentum models do not
lie in the second part of the CRASH algorithm. Any differences and inaccuracies can
only be due to the first part of the algorithm where the crush damage is estimated. The
consequent dependence on accuracy to the first part of the CRASH algorithm

motivates the discussion on measuring protocols detailed in Chapter 3.

8.3 Energy adjustment factors

As shown in Chapter 3 the measuring process requires that the crush measurements
are made perpendicular to the damaged face of the vehicle. The raw crush energy
values obtained from these measurements are then transformed into values suitable as
input to the second part of the algorithm. This is achieved through the use of energy
adjustment factors which effectively scale the raw crush energy into suitable estimates.
The nature and effect of the energy adjustment factors are described in Chapter 4. It
should be noted that the energy adjustment factors only affect the first part of CRASH

algorithm where the estimates of crush damage are made.

Methods are detailed which allow the crush energy to be estimated using the

momentum models. This permits a comparison to be made between the estimates of

157



8. Conclusions Jon Neades

crush energy obtained by measurement and theoretical values obtained from the
momentum models. It is shown that the standard energy adjustment factor as
described by McHenry [65] does not produce results consistent with the momentum
models. Similarly other adjustment factors proposed by Fonda [31] or a later revision
by McHenry [66] also do not provide results consistent with the momentum models. An
alternative adjustment factor is derived in Chapter 4 which does provide a scale factor
which matches energy values obtained from the momentum models. In essence this
new method partitions the crush energy into two terms, one produced by the
component of the impulse perpendicular to the damaged surface and the other by the

component of the impulse which is tangential to the surface.

The new adjustment factor requires an estimate to be made of the angle between the
pre-impact velocity vectors of the two vehicles (closing velocity angle). It also takes
into account restitution both parallel and perpendicular to the damaged surface. It is
recognised that this information may not be readily available which may reduce the
utility of the new adjustment factor. This shortcoming is addressed in Chapter 7 where
a method to determine the pre-impact velocities of the vehicles is developed. This

information does then allow for the closing velocity angle to be determined.

Chapter 4 also details a new method whereby the two coefficients of restitution e, and
e; used by the impact phase models can be transformed to different orientations of the
impact plane. The new energy adjustment factor requires such a conversion to
transform coefficients of restitution parallel and perpendicular to the impulse to their
equivalent values perpendicular and parallel to the impact surface. In addition this
transformation may prove useful more generally whenever converting between different

orientations of the impact plane.

8.4 Theoretical accuracy of CRASH

Chapters 5 and 6 describe a detailed discussion concerning the overall accuracy of the
CRASH algorithm. Chapter 5 discusses accuracy from a theoretical viewpoint whereas
Chapter 6 contains details of a Monte Carlo simulation designed to explore overall

accuracy and the effect of uncertainty in the CRASH input parameters

These analyses show that front to side (FTS) impacts are inherently less accurate and

therefore produce a greater range of overall uncertainty than front to front (FTF) or front
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to rear (FTR) impacts. Some of the input parameters respond in a non-linear manner
such as uncertainty in crush depth or PDOF. As a result it has not been possible to

determine a simple guide to indicate overall uncertainty from any one parameter.

Utilising typical uncertainties matching those of Smith and Noga [108] as listed in Table
5.2, overall uncertainty in DeltaV is found to be about 15 — 17% for front to side
impacts. This reduces to around 9 — 12% for front to front or front to rear impacts. The
largest individual contribution is that due to uncertainty in PDOF. A reduction in this
one parameter therefore is likely to have the greatest overall effect. Reducing
uncertainty in the PDOF to +10° reduces overall uncertainty to 13 — 15% for front to
side impacts and 8 — 10% for end to end impacts.

A careful analysis of one of the standard data sets has shown that this behaviour is due
to the significantly larger length of the side of a vehicle when compared with its width.
However this analysis is based on a relatively small data set with only two or three test
collisions in each category. Nevertheless larger data sets are not expected to produce
significantly different results.

The analytical model produces results which are comparable to the Monte Carlo
method. It is clear too that the two methods produce closer results if uncertainty in
PDOF is minimised. A method for reducing the uncertainty in PDOF is discussed in
Chapter 7.

8.5 Determining actual vehicle speeds

A new technique is developed in Chapter 7 which permits the actual speeds of vehicles
involved in a collision to be determined from the changes in velocity which each vehicle
sustains as a result of that collision. This is a significant new result based on the
assumptions of the CRASH algorithm. However it should be noted that this method is
equally applicable to any technique which provides change in velocity data. The new
method takes into account the effects of restitution both parallel and tangentially to the
impulse and as such should be applicable to the majority of vehicle to vehicle

collisions.

This new method cannot be used however where the angle between the closing
velocities is either zero or 180° as the solution relies upon the sine of this angle in the

denominator leading to a singularity in the solution equations. At angles close to zero
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or 180° the results become very sensitive to the exact angle and any results should be

treated with caution.

The determination of vehicle pre-impact velocities with knowledge of the changes in
velocity means that the post impact velocities can also be determined. Using an
iterative process the PDOF values for each vehicle can be refined so that the desired
post impact trajectories are achieved. This too is a significant development in forensic
collision investigation as it enables a better estimate to be made of the PDOFs which
traditionally have been difficult to estimate. It is found that even small variations in
PDOF (around 0.1°) can produce significant changes in the post-impact trajectories so
that estimates of PDOF to within £1° are possible.

The new technique to estimate pre-impact speeds was applied to the RICSAC series of
test collisions. Using the standard energy adjustment factor discussed in Chapter 4 it
was found that the new method produced results which underestimated DeltaV by
about 2% with a standard deviation of 6.4%

The new energy adjustment factor was also applied to the RICSAC collisions and
compared with the standard adjustment factor. Using the new factor produced a
slightly better correspondence with actual pre-impact speeds with an average error of
less than 0.2% with a standard deviation of 5.5%. This shows that a combination of the
new techniques to estimate pre-impact speeds, coupled with the new adjustment factor
may yield an estimate of pre-impact speeds with a 95% confidence interval of about
+11%.

8.6 Evaluation

In Chapter 1 a series of specific objectives were formulated by which this research

could be evaluated. For convenience these are addressed in turn
Determine how the various impact phase models are interrelated

Chapter 2 shows how the impact phase models considered by this research are
related. The two momentum models of Brach [11] and Ishikawa [43] are shown
to be equivalent. The relationship of the momentum models to the CRASH

model developed by McHenry [65] is also established. That is, if the impact
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plane required by the models of Brach and Ishikawa is orientated so that it is

perpendicular to the impulse, then all three models produce identical results.

So that consistency can be achieved, describe a systematic method to determine crush

damage profiles

Chapter 3 provides a consolidated set of measuring protocols. Although many
of the techniques are addressed elsewhere, there is not a single document
summarising them or their application. In particular a new technique for

measuring severely bowed vehicles is presented.

Determine whether the energy adjustment factor commonly used by CRASH accurately
models reality. If not, determine whether there an alternative adjustment factor which

can be utilised or developed

These objectives are considered in Chapter 4. A number of energy adjustment
factors have been proposed in addition to the standard factor proposed by
McHenry [65]. None of these factors produce total crush energy values which
correspond to the loss of energy predicted by the momentum only models of
Brach [11] and Ishikawa [43]. An alternative energy adjustment factor is
developed and evaluated which does produce crush energy results which

match those predicted by the momentum models.
Determine the overall accuracy that can be expected from CRASH analyses

This aspect is considered in Chapters 5 and 6. Overall accuracy is found to be
dependent on the impact type. For example, front to side impacts are

inherently less accurate than front to front or front to end impacts.
Determine the most significant factors affecting the accuracy of CRASH

The most significant factor affecting the accuracy of CRASH is the requirement
for user estimated values for the principal direction of force (PDOF).
Uncertainty in the PDOF is typically in the order of £20°. Such a level of
uncertainty in the PDOF accounts for some 52% of the total uncertainty in the

overall result.
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Ascertain whether it is possible to determine the actual velocities of vehicles from

DeltaV values

Chapter 7 describes the development of a new technique which allows the
determination of actual pre- and post-impact velocities from an analysis of the
changes in velocity sustained by each of the vehicles in a collision. This
technique is applicable to the majority of vehicle to vehicle collisions. When
compared to the results of a series of test collisions the new technique is able to
predict the actual pre-impact speeds with a 95% confidence interval of £11%.
This is comparable to the accuracy obtained with many of the other techniques

used in forensic collision investigation.

Describe techniques which can be used or developed to reduce uncertainty in the most

significant factors affecting accuracy

Chapter 7 presents a new technique which can be used to refine an initial
estimate of the PDOFs. Matching the post-impact trajectories predicted by the
determination of actual speeds algorithm, enables the initial estimate of the
PDOF to be adjusted thereby significantly reducing the uncertainty in the
estimate of PDOF. Small changes in the PDOF estimates can have a large
effect on the post impact trajectories which means that potential uncertainty in
the PDOF can be reduced to less than +1°.

8.7 Limitations of findings

The investigation has demonstrated the accuracy of CRASH from a theoretical and
experimental viewpoint. However, the study was restricted by a relatively small sample
of collisions (mainly the RICSAC series of tests), covering a limited range of collision
typologies. The CRASH algorithm can be viewed as two separate techniques; the first
to establish an estimate of the work done in causing deformation and the second to
calculate the change in velocity. The study has clearly evaluated the relative
importance of the factors applied to the second part of the model. For the first part, the
work done is significantly affected by the accuracy of the residual crush measurements
and the stiffness coefficient values (A and B). These were considered for the test data
available. However, it is possible that the A and B values used over-simplify the force-

crush relationship for a modern vehicle, where a non-linear response may be observed
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for some cars. The assessment of this was beyond the practicable scope of this study,

largely because of the data restrictions.

8.8 Recommendations for future work

The validation of the theoretical models developed as part of this thesis is based on a
relatively small sample of test collisions, mainly those from the RICSAC series of tests.
A study using a more extensive series of tests would yield more detail of the likely
accuracy of the CRASH algorithm. It would also provide additional information which

may help to refine the details of the analytical and Monte Carlo models presented here.

The new energy adjustment factor described in Chapter 4 has been validated for a
range of scenarios Further work would assist in determining the validity of its use in a
wider range of collisions. Chapter 4 considered some collisions where the new
adjustment factor generated results which matched those from the momentum models
of Brach [11] and Ishikawa [43]. The technique was applied to the RICSAC tests, a
standard data set, with considerable success. There are few if any other data set
available. The production and publication of other data sets would enable a wider

investigation of all the models discussed here. Additional work in this area is desirable.
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Appendix A: Solution Equations of Planar Impact Mechanics (PIM)

The planar impact mechanics model is discussed in section 2.3. Brach [11] shows that the
solution to this model can be expressed as

v, =U, +m(+e U, q/m,

V, =Uy, +um(l+e U, q/m,

V,, =U, —m(l+e U, q/m,,

Vy, = U, —um(+e, )U.q/m,,

Q, =@, + m(+e,)Up, (h —uhy)a/ (mkS),
Q, = w, +m(L+e,)Ug, (h, — 10, )q/ (M,k?)

where

m=mm, /(m +m,),

e, =—(Vg, /Upg),

u=RIFR,

Ug, =U,, —hw,-u, +ha, Vg, =V,,—hQ,-v, +hQ,
Ug =U, —h,@, —u, +h,o,, Vg =V, +h,Q,—-v,+h,Q,
1, ﬁhfz N Ehjz B (ﬁhlh;t N ﬁhzhgtj: At 4B,
q mk™  m,k; mK; m,kK,
h,=d,sin(@,+¢,-I') h,, =d,cos(b, +¢,-TI),

h =d;sin(@ +¢ -T) h, =d,cos(& +¢ —T).

The critical impulse ratio | is defined as

_ rA+B(l+e)
Ho = i) 1+C)+ 1B

where

r=Ug /Ug,

mh’  mh}

m1k12 m2k221

g My | My
mlkl m2k2
1.2 1.2

C= m_hlterﬂth
mlkl m2k2

A=1+
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Appendix B: Solution Equations For Ishikawa’s Model

Ishikawa’s impact model is discussed in section 2.4. Ishikawa [43] and [42] shows that the

solution to this model can be expressed as

B 1
- (1_ mnmtmg)
B 1
 (1-mmm;)

[an o @+e)+mmmU. 1+ et)],

n

t [thRt(1+et)+mnmtmOURn(1+en)]

where e, and e; can be found from

VRn = _enU Rn? VRt = _etU Rt

The relative speeds of the point of application of the impulse are defined as
U rn = Upy — hza’z —U, + hla)l
Van = Vo — h2Q2 — Vg, + h1Ql
Ug, = Uy +hy0, —u, —hyo
VRt =Vy + hztgz —Vy — hth1

The mass ratios used extensively by Ishikawa are defined as

o MMy
=
7/1n ml + }/anZ
m = VMo M,
My + 75 M,
__hh hhy
(VN 2 2
mlkl mZkZ
where
Vin = L Yon = L
" kZ+h? 2 kZ4+h?
ko _ Kk
SRR S

o — mUg, (1+e,)(z—mm,) 1
' mUp, (1— zm,m,)

LS
I
-0 |
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Appendix C: Conversion between PIM and Ishikawa’s Models

PIM by Brach [11] and the impact model by Ishikawa [43] are shown to be equivalent in Chapter
2. The equivalence between the various coefficients used by each of these model is

summarised below

1+C)’ 0

n o _
iy m,

B
=

From these equivalences the following products can be derived

mnmtmO = !
Al+C)

mB
m,mm, =———.
A(l+C)

Using Ishikawa’s notation p can be expressed as

— E — mnrntmOU Rn (1+en) + r‘ntURt (1+et)
a I:)n mnrntmOURt(l_'_et)+anRn(1+en)

Using the conversion factors specified above, | can be expressed using Brach’s notation and e;

as

_ (+e)rA+B(l+e,)
A Wre)1+C)+rB(Lte)
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Appendix D: Raw RICSAC Test Data (From Jones & Baum [51])

This data forms the raw source data used by several analyses in this thesis and is introduced in Chapter 5.

Test.Veh L D cl c2 c3 c4 c5 c6 A B CgtoF | Cgto R | Length | Width Mass | Inertia

(cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (N/em) | (N/em?) | (cm) (cm) (cm) (cm) (kg) (kgm?)

11 117 36 10 14 18 26 31 38 624 23 251 290 541 196 2096 5054
1.2 288 55 30 27 30 23 10 246 46 212 233 444 171 1398 2659
2.1 192 0 6 9 18 30 42 624 23 251 290 541 196 2096 5054
2.2 301 35 17 58 60 54 25 0 246 46 212 233 444 171 1397 2658
3.1 76 56 5 5 4 4 5 6 624 23 251 290 541 196 2244 5413
3.2 76 13 17 17 15 13 10 8 684 28 212 233 444 171 1415 2692
4.1 105 41 16 20 25 32 38 46 624 23 251 290 541 196 2259 5447
4.2 106 -23 91 81 74 61 50 38 684 28 212 233 444 171 1447 2752
5.1 85 52 4 4 5 5 6 7 624 23 251 290 541 196 2086 5031
5.2 135 -4 91 93 80 58 34 15 641 26 193 213 406 154 1147 1484
6.1 138 25 1 1 3 4 4 6 624 23 251 290 541 196 1950 4703
6.2 196 -8 10 30 45 49 43 21 246 46 212 233 444 171 1190 2263
7.1 168 10 0 3 5 10 13 16 624 23 251 290 541 196 1678 4047
7.2 276 -22 0 28 45 53 54 20 246 46 212 233 444 171 771 1467
8.1 185 0 7 9 0 0 0 0 624 23 251 290 541 196 2031 4899
8.2 215 38 16 21 23 15 11 2 251 35 251 290 541 196 2136 5152
9.1 126 4 13 15 32 19 19 24 528 32 193 213 406 154 1023 1323
9.2 138 173 20 12 12 8 7 4 251 35 251 290 541 196 2222 5359
10.1 121 -7 18 26 36 23 23 23 528 32 193 213 406 154 1046 1352
10.2 135 169 23 17 15 13 11 1 251 35 251 290 541 196 2141 5162
111 83 -32 56 51 47 43 38 32 454 30 212 233 444 171 1379 2624
11.2 82 -33 75 67 58 a7 36 28 624 23 251 290 541 196 2200 5305
12.1 81 7 98 88 75 66 50 36 454 30 212 233 444 171 1420 2700
12.2 72 -27 100 84 73 60 49 38 624 23 251 290 541 196 2046 4935
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Appendix E: RICSAC Results from raw Jones & Baum [51] data using AiDamage [74]

This appendix shows the impact configurations, PDOF and DeltaV results from the raw
(unadjusted) RICSAC test data as described in Chapter 5 and listed in Appendix D. Note that
the zero entries for pre-impact motion in the AiDamage results merely indicate that this

calculation was not performed.

RICSAC 1 Base RICSAC 1 Base

(Damage based) (Impact attitude)
Veh 1 Veh 2

Total Delta- V: 6.20 929 m's

Longitudinal Delta-V: -5.37 -8.05 m/'s

Lateral Delta-V: 310 -4.65 m's

Angular velocity change: 23741 99.48 deg/s

Energy dissapated: 4517 10289 K
Magnitude of force 15467 71643 KN
Force direction: -30.00 30.00 deg

Pre-impact motion

Total speed: 0.00 0.00 m/'s
Longitudinal component: 0.00 0.00 m/'s
Lateral component: 0.00 0.00 m/'s
Sideslip: 0.00 0.00 deg
RICSAC 2 Base RICSAC 2 Base
(Damage based) (Impact attitude)
Veh 1 Veh 2
Total Delta- V: 10.34 15,51 m's
Longitudinal Delta-V: -8.96 -13.43 m's
Lateral Delta-V: 517 -7.75 m's

Angular velocity change: 37392 21112  deg/s

Energy dissapated: 6143 34443 «;

kJ
Magnitude of force 22592 1286.51 kN b -
Force direction: -30.00 30.00 deg '

Pre-impact motion

Total speed: 0.00 0.00 m's
Longitudinal component: 0.00 0.00 m's
Lateral component: 0.00 0.00 m's
Sideslip: 0.00 0.00 deg
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RICSAC 3 Base RICSAC 3 Base
(Damage based) (Impact attitude)

Veh 1 Veh 2
Total Delta- V: 279 443 m's
Longitudinal Delta-V: -2.79 4.36 m/'s
Lateral Delta-V: 0.00 -0.77 m/s
Angular elocity change: 37.47 42.05 deg/s
Energy dissapated: 8.82 15.67 KJ
Magnitude of force 55.96 81.65 kN
Force direction: 0.00 17000 deg
Pre-impact motion
Total speed: 0.00 0.00 m/'s
Longitudinal component: 0.00 0.00 m/'s
Lateral component: 0.00 0.00 m/'s
Sideslip: 0.00 0.00 deg
RICSAC 4 Base RICSAC 4 Base
(Damage based) (Impact attitude)

Veh 1 Veh 2
Total Delta-V: 7.05 11.00 m/'s
Longitudinal Delta-V: -7.05 10.85 m's
Lateral Delta-V: 0.06 -182 m/'s
Angular velocity change: 87.25 206.84  deg/s
Energy dissapated: 39.23 12861 K
Magnitude of force 137.11 27306 KN
Force direction: -050 17050 deg
Pre-impact motion
Total speed: 0.00 0.00 m's
Longitudinal component: 0.00 0.00 m's
Later al component: 0.00 0.00 m/'s
Sideslip: 0.00 0.00 deg
RICSAC 5 Base RICSAC 5 Base
(Damage based) (Impact attitude)

Veh 1 Veh 2
Total Delta-V: 6.89 1254 m/'s
Longitudinal Delta-V: -6.89 12.35 m's
Lateral Delta-V: 0.00 -2.18 m's
Angular velocity change: 92.78 27612  deg/s
Energy dissapated: 10.05 15347 K
Magnitude of force 63.09 31633 KN
Force direction: 0.00 17000 deg
Pre-impact motion
Total speed: 0.00 0.00 m/'s
Longitudinal component: 0.00 0.00 m's
Lateral component: 0.00 0.00 m's
Sideslip: 0.00 0.00 deg
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RICSAC 6 Base RICSAC 6 Base

(Damage based) (Impact attitude)
Veh 1 Veh 2

Total Delta-V: 697 11.43 m/'s

Longitudinal Delta-V: -6.04 -9.90 m's

Lateral Delta-V: 349 -5.72 m/'s

Angular elocity change: 265.68 19625 deg/s

Energy dissapated: 19.39 16958 K L\\\
Magnitude of force 111.71 75666 KN
Force direction: -30.00 30.00 deg

Pre-impact motion

Total speed: 0.00 0.00 m/'s

Longitudinal component: 0.00 0.00 m/'s

Lateral component: 0.00 0.00 m/'s

Sideslip: 0.00 0.00 deg

RICSAC 7 RICSAC 7
(Damage based) (Impact attitude)

Veh 1 Veh 2

Total Delta-V: 8.84 19.25 m's

Longitudinal Delta-V: -766 -16.67 m/s

Lateral Delta-V: 442 -962 m's

Angular elocity change: 330.08 32445  deg/s

Energy dissapated: 3147 267.59

(3]
Magnitude of force 155.34 1099.85 KN
Force direction: -30.00 30.00 deg

Pre-impact motion

Total speed: 0.00 0.00 m's
Longitudinal component: 0.00 0.00 m's
Later al component: 0.00 0.00 m's
Sideslip: 0.00 0.00 deg
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RICSAC 8 RICSAC 8

(Damage based) (Impact attitude)
Veh 1 Veh 2

Total Delta- V: 484 460 m/'s

Longitudinal Delta-V: -4.19 -2.30 m/'s

Lateral Delta-V: 242 -3.99 m/s

Angular elocity change: 14622 29.89 deg/s

Energy dissapated: 34.81 28.27 KJ
Magnitude of force 17338 1927 KN XI
Force direction: -30.00 60.00 deg

Pre-impact motion

Total speed: 0.00 0.00 m/'s

Longitudinal component: 0.00 0.00 m/'s

Lateral component: 0.00 0.00 m/'s

Sideslip: 0.00 0.00 deg

RICSAC 9 RICSAC 9

(Damage based) (Impact attitude)
Veh 1 Veh 2

Total Delta-V: 6.32 291 m/'s

Longitudinal Delta-V: -547 -145 m's

Lateral Delta-V: 3.16 -252 m/'s

Angular velocity change: 27237 -62.99 deg/s

Energy dissapated: 37.85 10.16 kJ

Magnitude of force 17451 96.70 KN

Force direction: -30.00 60.00 deg

Pre-impact motion

Total speed: 0.00 0.00 m's

Longitudinal component: 0.00 0.00 m's

Later al component: 0.00 0.00 m/'s

Sideslip: 0.00 0.00 deg

RICSAC 10 RICSAC 10
(Damage based) (Impact attitude)

Veh 1 Veh 2

Total Delta-V: 7.08 346 m/'s

Longitudinal Delta-V: -299 -3.13 m's

Lateral Delta-V: 642 -146 m's

Angular velocity change: 500.78 12.96 deg/s

Energy dissapated: 68.99 21.82 K
Magnitude of force 386.54 23329 KN

Force direction: -65.00 25.00 deg g

Pre-impact motion

Total speed: 0.00 0.00 m/'s
Longitudinal component: 0.00 0.00 m's
Lateral component: 0.00 0.00 m's
Sideslip: 0.00 0.00 deg
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RICSAC 11 RICSAC 11
(Damage based) (Impact attitude)
Veh 1 Veh 2
Total Delta- V: 933 585 m's
Longitudinal Delta-V: -9.30 -5.83 m's
Lateral Delta-V: -0.73 046 m's
Angular elocity change: -142.41 -30.01 deg/s
Energy dissapated: 44.89 61.60 KJ ’
Magnitude of force 147.75 15095 KN ‘ﬂ
Force direction: 450 -450 deg ’

Pre-impact motion

Total speed: 0.00 0.00 m/'s

Longitudinal component: 0.00 0.00 m/'s

Lateral component: 0.00 0.00 m/'s

Sideslip: 0.00 0.00 deg

RICSAC 12 RICSAC 12

(Damage based) (Impact attitude)
Veh 1 Veh 2

Total Delta-V: 11.74 8.15 m's

Longitudinal Delta-V: -11.70 -8.12 m's

Lateral Delta-V: -092 064 m's

Angular elocity change: -45.24 -29.66  deg/s

Energy dissapated: 90.69 76.60 K

Magnitude of force 205.08 15737 KN

Force direction: 450 -450 deg

Pre-impact motion

Total speed: 0.00 0.00 m's
Longitudinal component: 0.00 0.00 m's
Later al component: 0.00 0.00 m's
Sideslip: 0.00 0.00 deg
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Appendix F: RICSAC Results from adjusted data using AiDamage [74]

This appendix shows the impact configurations, PDOF and DeltaV results from the adjusted
RICSAC test data as described in Chapter 5. The pre and post-impact vectors showing motion
of the vehicles’ centres of mass are also shown, superimposed on the impact configuration
diagrams. Note that as in Appendix F, the zero entries for pre-impact motion in the AiDamage

results merely indicate that this calculation was not performed.

RICSAC 1 v2-10cm RICSAC 1 v2-10cm

(Damage based) (Impact attitude)
Veh 1 Veh 2

Total Delta- V: 526 7.88 m's

Longitudinal Delta-V: -5.16 -5.20 m/'s

Lateral Delta-V: 103 -592 m's

Angular velocity change: 117.77 35.16 deg/s

Energy dissapated: 35.23 48.35 KJ
Magnitude of force 136.60 34271 KN
Force direction: -11.30 48.70 deg

Pre-impact motion

Total speed: 0.00 0.00 m/'s

Longitudinal component: 0.00 0.00 m/'s

Lateral component: 0.00 0.00 m/'s

Sideslip: 0.00 0.00 deg

RICSAC 2 v2-15cm RICSAC 2 v2-15cm
(Damage based) (Impact attitude)

Veh 1 Veh 2

Total Delta- V: 837 1255 m's

Longitudinal Delta-V: -8.19 -8.35 m/'s

Lateral Delta-V: 1.70 -9.37 m's

Angular elocity change: 170.35 13579  deg/s

A

Energy dissapated: 48.05 16520 K
Magnitude of force 199.80 61118 kN
Force direction: -11.70 48.30 deg

Pre-impact motion

Total speed: 0.00 0.00 m's
Longitudinal component: 0.00 0.00 m's
Lateral component: 0.00 0.00 m's
Sideslip: 0.00 0.00 deg
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RICSAC 3 V1+5cm V2 offset -50
(Damage based)

Veh 1
Total Delta- V: 3.03
Longitudinal Delta-V: -293
Lateral Delta-V: -0.74
Angular elocity change: -392
Energy dissapated: 12.59
Magnitude of force 66.85
Force direction: 14.10
Pre-impact motion
Total speed: 0.00
Longitudinal component: 0.00
Lateral component: 0.00
Sideslip: 0.00
RICSAC 4 v2-15cm
(Damage based)

Veh 1
Total Delta- V: 659
Longitudinal Delta-V: -6.46
Lateral Delta-V: -1.27

Angular velocity change: 6.04

Energy dissapated: 40.73
Magnitude of force 139.72
Force direction: 11.10

Pre-impact motion

Total speed: 0.00
Longitudinal component: 0.00
Later al component: 0.00
Sideslip: 0.00

RICSAC 5 -20cm

(Damage based)

Veh 1
Total Delta-V: 590
Longitudinal Delta-V: -5.78
Lateral Delta-V: -1.19

Angular velocity change: 7.80

Energy dissapated: 10.47
Magnitude of force 64.41
Force direction: 11.60

Pre-impact motion

Total speed: 0.00
Longitudinal component: 0.00
Later al component: 0.00
Sideslip: 0.00

Veh 2
480
4.79
034
56.09

1528
80.62
-175.90

0.00
0.00
0.00
0.00

Veh 2
10.28
10.28
0.20

88.25

88.10
22459
-178.90

0.00
0.00
0.00
0.00

Veh 2
10.74
10.73
0.30

97.45

94.16
24252
-178.40

0.00
0.00
0.00
0.00

RICSAC 3 V1+5cm V2 offset -50
(Impact attitude)

RICSAC 4 V2 -15cm
(Impact attitude)

RICSAC 5 -20cm
(Impact attitude)
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RICSAC 6 -15cm
(Damage based)

Total Delta- V:
Longitudinal Delta-V:
Lateral Delta-V:

Angular elocity change:

Energy dissapated:
Magnitude of force
Force direction:

Pre-impact motion

Total speed:
Longitudinal component:
Lateral component:
Sideslip:

RICSAC 7 -20cm
(Damage based)

Total Delta-V:
Longitudinal Delta-V:
Lateral Delta-V:

Angular velocity change:

Energy dissapated:
Magnitude of force
Force direction:

Pre-impact motion

Total speed:
Longitudinal component:
Later al component:
Sideslip:

Veh 1
520
-5.10
0.99
108.83

15.09
98.55
-11.00

0.00
0.00
0.00
0.00

Veh 1
6.06
-591
133
133.32

24.80
13790
-12.70

0.00
0.00
0.00
0.00

Veh 2
852
-5.59
-6.43
117.95

67.68
328.19
49.00

0.00
0.00
0.00
0.00

Veh 2
1319
-8.94
-9.69
186.45

91.76
438.30
47.30

0.00
0.00
0.00
0.00

RICSAC 6 -15cm
(Impact attitude)

RICSAC 7 -20cm
(Impact attitude)
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RICSAC 8 e=0.3 RICSAC 8 e=0.3
(Damage based) (Impact attitude)
Veh 1 Veh 2
Total Delta- V: 655 6.23 m's
Longitudinal Delta-V: -6.14 -2.18 m/'s
Lateral Delta-V: 229 -584 m's
Angular \elocity change: 140.82 18.66 deg/s T
Energy dissapated: 29.75 24.16 [\{

KJ
Magnitude of force 160.31 18424 KN
Force direction: -20.50 69.50 deg /

Pre-impact motion

Total speed: 0.00 0.00 m/'s

Longitudinal component: 0.00 0.00 m/'s

Lateral component: 0.00 0.00 m/'s

Sideslip: 0.00 0.00 deg

RICSAC 9 V2 -10cme=0.3 RICSAC 9 V2-10cme=0.3

(Damage based) (Impact attitude)
Veh 1 Veh 2

Total Delta-V: 6.65 3.06 m/'s

Longitudinal Delta-V: -6.18 -1.14 m's

Lateral Delta-V: 247 -2.84 m/'s

Angular velocity change: 232.02 -82.16 deg/s

Energy dissapated: 17.77 8384

kJ
Magnitude of force 11866 9020 KN \V
Force direction: -21.80 68.20 deg l gi&

Pre-impact motion

Total speed: 0.00 0.00 m's
Longitudinal component: 0.00 0.00 m's
Later al component: 0.00 0.00 m/'s
Sideslip: 0.00 0.00 deg
RICSAC 102 +10cm e=0.3 RICSAC 102 +10cm e=0.3
(Damage based) (Impact attitude)
Veh 1 Veh 2
Total Delta-V: 10.85 5.30 m/'s
Longitudinal Delta-V: -981 -2.26 m's
Lateral Delta-V: 464 -4.79 m's = |
Angular velocity change: 334.60 -134.60 deg/s
Energy dissapated: 42.20 27.21 K
Magnitude of force 180.69 15568 KN
Force direction: -25.30 64.70 deg /
Pre-impact motion
Total speed: 0.00 0.00 m/'s
Longitudinal component: 0.00 0.00 m's
Lateral component: 0.00 0.00 m's
Sideslip: 0.00 0.00 deg
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RICSAC 11 RICSAC 11
(Damage based) (Impact attitude)
Veh 1 Veh 2
Total Delta- V: 9.73 6.10 m's
Longitudinal Delta-V: -9.72 -5.97 m/'s
Lateral Delta-V: 049 126 m's
Angular elocity change: -77.15 1104 deg/s
Energy dissapated: 44.73 63.94 KJ
Magnitude of force 14748 15379 KN
Force direction: -290 -1190 deg
Pre-impact motion
Total speed: 0.00 0.00 m/'s
Longitudinal component: 0.00 0.00 m/'s
Lateral component: 0.00 0.00 m/'s
Sideslip: 0.00 0.00 deg \
v
RICSAC 12 RICSAC 12
(Damage based) (Impact attitude)
Veh 1 Veh 2
Total Delta- V: 15.95 11.07 m's
Longitudinal Delta-V: -15.95 -10.96 m/'s
Lateral Delta-V: -0.28 154 m's
Angular elocity change: -31.08 -18.76 deg/s
Energy dissapated: 155.25 15137 K
Magnitude of force 352.12 30892 KN
Force direction: 1.00 -8.00 deg
Pre-impact motion
Total speed: 0.00 0.00 m/'s
Longitudinal component: 0.00 0.00 m/'s
Lateral component: 0.00 0.00 m/'s /
Sideslip: 0.00 0.00 deg i
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Appendix G: Partial Derivatives. Evaluated symbolically using Mathcad V.13

The potential accuracy of CRASH is discussed in Chapter 5. As part of the analysis to
determine the accuracy, the partial derivatives of the equations used to determine crush energy

and CRASH are required. These are detailed in this Appendix.

Partial derivatives for the crush energy equation (from Singh [99])

2
:L &4_%4_&
n-1| 2 6 2B

where

n-1
n=[C+Cl,
i=1
n-1

K= Z[Ciz +CCy + Ci2+l]'

i=1

The partial derivatives of each parameter are then given by

on =a{§[ci+ci“]} _{1 forj=1n

i=1
oC. oC. 2 forj=1n

] ]

. a["z'l[ci%cic”ﬁciil]} 2C;+Cy,  forj=1

- &% =4Cj1+4C;+C, forj=1n

CE_ L [n_ (n-DA
oA n-1l2 B

OB n-1|6 2B?

E_ L[k (n—l)Az}

CE__1|Mp B (n-DA’
oL n-1| 2 6 2B

E_ AL
on 2(n-1)
E_ BL

ok 6(n-1)
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Partial derivatives of standard energy adjustment factor (from McHenry [65])
E=E (l+tan’ ).
This produces the two partial derivatives

£=1+tan2a,
oE

n

;3_E =2sec’ atan o = 2tan a(1+ tan® o).
o

Partial derivatives of CRASH equation (from McHenry [65] and amended by Smith [105])

Ay = 2m,(E, +E,)(1+e,)
b m(ms, +mys)d-e,)’

_ MAv,

Av,
m2

where

2
5=1+%,

h=dsin(@+g).

This produces the series of partial derivatives for each parameter as follows

@ _,h

oh k?
05 _ ,h°

ok k®

oh .

— =sin(@ +
p (0+9¢)
oh

— =d cos(8 +
Y (0+¢)

oh
% =d cos(€ + @)

m, (E, +E,)(1+e,) m,&,(E, +E,){1+¢,)

8AV1 _ rnil.2 (ml§2 + mZé‘l)(l_ ep) ml(mlé‘Z + m25jl_)2 (1_ ep)

om, 2m, (E, + E,)1+e,)
ml(ml52 + m251)(1_ ep)
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(E,+E,))1+e,) B m,6,(E, +E,)(1+e,)
oAv,  m(mg, +m,5)1-e;) m(md,+ mzél)z(l_ep)
om, 2m, (E, + E,)(L+e,)
\/”H(m152 +m,5,)(1-e,)
OAv, 0OAv, m,(1+e,)
oE, O, 2m, (E, + E,)1+e,)

M, (M, +M,6;)(1— ep)\/ml(mlé‘2 +m,o,) (- ep)

OAvV, _ m22(E1+E2)(1+ep)
09, 2m,(E, +E,)(1+e,)
m, (M, + m,6,){1~e,)

m,(m,&, + m251)2(1—ep)\/

OAV, m,(E, +E,)A+e))

552 ) 2 Zmz(E1+E2)(1+ep)
(M5, +m,o,) " (1- ep)\/ml(mlé'2 +m,d,)(1- ep)

m, (E, +E,) N m,(E, + E,)(L+e,)
8AV1 _ ml(ml§2 + m25l)(1_ep) ml(m152 + mZé‘l)(l_ep)z
oe, 2m, (E, + E,)(L+e,)

\/ml(m152 + m251)(1_ep)

OAv, Av,
om o,
OAv, —Av,m,
om,  m?
OAv, m
OAV, - m_2
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Appendix H: Analytical Mathcad Model to Determine Uncertainty in Av (RICSAC 8)

An analytical model to determine the uncertainty in DeltaV is developed in Chapter 5. The
listing below is the Mathcad implementation of that model. Note that the green highlighting
indicates user input sections, blue highlighting indicates where uncertainty can be adjusted and
yellow indicates key output sections.

CRASH Analytical Error Analysis for RICSACS

Standard error factor to convert 95% confidence limits to standard deviation:
StdErmr:=1.9%

Part I: Calculation of Crush Energy
Measurement Data

Vehicle 1 Vehicle 2
6.9 15.7
7.34 21.1
7.78 23.4
CR= C2:=
8.22 15
8.66 11.2
9.1 2

&:=7.6. (7.62cm is equivalent to 3 inches)

C
On = c.=3.888
€' StdEn ¢
L1:=185.: L2:=214.i

=152  (15.24cm is equivalent to 6 inches)

oL
o) .=
L StdErm

oL =7.776

Stiffness Coefficients

&Coeff :=10%4 (Permits simple adjustment of all coefficients)

Al :=623.! A2 :=250.!
A1 :=Coeff-Al A2 :=3Coeff-AZ
Al 0A2
INE opq =31.811 Gpn = opao =12.781
AL StdEn Al A2 StdEn A2
B1:=23. B2:=34.¢
B1:=&Coeff-B: B2 :=&oeff-B:
B1 B2
OR1:= orq=1.189 ORo:= opo=1.776
B1 StdEn Bl B2 StdEn B2
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Derived values

i:=0..4

ocl::Z(Cll + C1'|+1)
i

(11280

= 3| (1) = expen + o, ]

B1 = 966.05

2
O I=J18GC

agi= Z(czi + C2i+1)
i

0(,2 =159.1

o= Z|:(C2i)2 +CHCE (C2|+1)2}

B, =4.303x 10°

o, = 16.494 (Common value for both vehicles)

2

op1i= [0 {(2C1+ CL) + (Cly + 4CL, + CL)*+ (C + 4CL,+ CL)* . | op - 396.841

+ (cl2 +4Cly+ 014)2 + (013 +4CL, + 015)2 + (2.(:15 + c14)2 |

opai= [0 |(2C%+ C2)" + (C2y+ 4C2, + C2) + (€2, + 4C2, + C2)° .

+ (022 +4C2,+ 024)2 + (023 +4.C2, + 025)2 + (2.(:25 + c24)2 |

Note multiplier of 1/100 to convert to joules

n:=e¢

_n.a2 BLp, Al
E1:=0.0 (n—1)-Al + 1+
2-B1 6 2

E1=2.611x 10

5| 2 512 6
2
1 Al 1 1
dLl:==—— + —BLBq + —-Al-ay
2 Bl 30 10
dal::i'AloL]
10

dpl = — BLLI
30

L2

a2 B2B, A2
E2:=0.0{(n Va2 772

282 6 2
4
E2=2.12x 10
aa =522, 1 oy | Lz
57 B2 2
1{ -5 A2% 1
dB2i= | =5+ =y L
5 B2
1A% 1 1
d2==22 4 ZB2p,+ — A2ay
2 B2 30 10
do2 ::i~A2~L2
10

dp2 = —.B2Ls
30

n-1
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Potential Error Calculations

2 2 2 2 2 2
op1:=0.01[dA1 60, " + dBT oy + dL1 o)+ doi* o, + APl op §E1:= oy StdEn

GE]_: 3.13x 103

6E1= 6.134x 10°

2 2 2 2 2 2 2
GE2=001 dA220A2 + dBZZGBz + dLZzGL + do2 'Ga + dB2 GBZ OE2:= GEZ'StdEr\
3
Cpo= 2.47x 10
3
3E2=4.841x 10
. S5E1 . ) S8E2 .
Ratiol:= — Ratiol = 23.497%« Ratio2:= — Ratio2 = 22.83%%
El E2
Analysis of Energy Calculations
2 z 2 p)
errAl :=1.960.01 |dAl ‘A1 errA2 :=1.960.01 [dA2 ‘a2
errAl errA2
RerrAl := RerrAl = 15.3924 RerrA2 .= RerrA2 = 5.86%

7 2
B 1:=1.960.01 |dBL-op nB2:=1.960.01 [dBZ o,

errB1 errB2
RerBl:= —— RerrBl=y % RerBB2:= —— RerB2=4.14%
El E2
2 2 22 2
errl1:=1.960.0% |dL1 ‘oL errL2:=1.960.01 |dL oL
errL1 errL.2
RerrLl:= —— RerrL1= 8.22% RerrL.2:= —— RerrL.2=7.102%
El E2
2 2 2 2
erral:=1.960.01 |dol O, erra?2:=1.960.01 [do2 ‘O,
errol erro2
Reffol = ——  Rertod = 14.315% Rermu2:= ——  Remo2 = 8.198%
El E2
2 2 2 2
errpl:=1.960.0% fd[}l "OB1 errpf2:=1.960.0% _[dp2 "OB2
errpl err2
RermBl = —— Ren3l = 3.693% Renp2 .= —— Rernp2 = 187724
El E2
2 2 2 2
t1 ::\/ RerrA1® + RenBL + RerL1 + Remol” + Rerpl t2 ::\/ RerrA2” + RemBZ + RenrLZ + Rera2” + Rerr2
t1=23.49™ t2 =22.83%%
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Energy Adjustment

Principal Directions of Force (PDOF)
(Base Side: O=Front, 90=right, 180=rear, 270=left)

BaseSidel:=C BaseSide2 := 9(
PDOF1:=—3( PDOF2:= 6(
&PDOF:=2(
S$PDOF
o = c =10.204
PDOF™ 5rger PDOF
01 := PDOF1— BaseSidel 02 := PDOF2— BaseSideZ
01 =-30 62 = —30
2 2
CF1:=1+ tan| 61 —— CF2:=1+ tan| 62—
180 180
CF1=1.333 CF2=1.333
2 2

d61:=2-tan| 61.—— |.| 1 + tan| 61. = 462 := 2-tan| 02 —— |.| 1 + tan| 62

180r 180 180r 180
do1 = —0.449 do2 = —0.449

2 ¢ 2 2
T T
c = [d01l | & — o] = [d02 | o —
CF1 ( PDOF 180) CF2 ( PDOF 180)

EC1:=EILCF: EC2:= E2CF;

4 4
EC1=3.481x 10 EC2= 2.827x 10
dE1:=CF: dE2:=CF:
dCF1:=E1 dCF2:=E1

2 2 2 7 2. 2 7 Z

GEClZ= dEl 'GEl +dCFl'GCF1 GEC2:= dE 'GEZ +dCF GCFZ
oECy= 4.665x 10° opcp=3.898x 10°
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Part Il: Calculation of DeltaV
81 and 82
¢l :=—0.98557 R :=—77.446
d1:=2.4701 HPESOIEES
& = 7_62
100
&d
Gn = o4 = 0.039
4" StdEn d
Angle defined so that lateral variation is equal to éd
180 . (& 180 . (&
&l 1= —— asin| — &il = 1.768 &2 := — asin| — AR =4.795
T d1l oL d2
= =0.902 = =2.446
%6~ StdEn it %~ Stden @
T T
h1:=d1-sin| (PDOF1+ —_— h2 :=d2-sin| (PDOF2+ ¢2)- —
(PooFL- )2 (poorz- )2
hl=-1.272 h2 =-0.273
T T
ddl :=sin| (PDOF1+ ¢1)- — dd2 :=sin| (PDOF2+ (2)- —
(poorr )2 (poor2: )2
ddl =-0.515 dd2 =-0.3
T T
ddl :=d1-cos| (PDOF1+ ¢l)- — d¢? :=d2-cos| (PDOF2+ (2)- —
" [( i) 180} @ [( o) 180}
dgl =2.118 d¢R = 0.87
dPDOF1:=ddl dPDOF2:=ddr

2 2
2 T T
chlzz_j(ddl.cd) + (dPDOFlcPDOFEJ + (dq,l.%l.%)

oy = 0.379

2 2
2 T T
Sho .:_j(ddz.cd) + (dPDOcmPDOFﬁJ + (d&.cdﬂ.ﬁj
ohp = 0.16
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k1:=1.5530 k2:=1.5529
&:=0.!
&K
Ol : o) = 0.051
K StdEn K
2 2
hl h2
oli=1+ — al=1.67 2:=1+— & =1.031
ki k?
1 1
vl:=— v1=0.599 V2 :=— v2=0.97
ol &2
2 2
h1l h2
dkl:=-2.— dkl =-0.863 dk2 :=-2.— dk2=-0.04
ki® k2
hl h2
dhl =2 — dhl =-1.054 dh2 :=2-— dh2 = -0.227
k1® %

o51 ::J(dk1~ck)2 + (dh1~ch1)2

Mass
ml:=203:

am:=5(
dm

Oy = ——— 6= 25.51
M Stden m

Coefficient of Restitution
ep :=0.(
oep :=0.(

O, = &p
& " StdEn

Nominal Mean DeltaV and Variance

2-m2(EC1+ ECD-(1 + ep)
Avl =
\ m:(m1& + m28L)-(1 - ep)

Av1 = 6.553

o5 :=J(d|0~0k)2 + (dh2-ch2)2

ogp = 0.036

m2:= 213t

ml
AV2 :=Avl. —

m2

Av2 =6.231

197



Appendices Jon Neades

1+ep 1+ep

~ m2(EC1+ EC2- > &
m1°(m182 + m2581)-(1 — ep) m1(m1& + m251)"(1 - ep)
1

{(—m3~(ECl+ EC2-
dml:=

[ 2.m2(EC1+ EC2-(1 + ep) } 2
m2(m182 + m238l)-(1 - ep)

dml=—1.632x 10 °

1+ep
m1(m1:82 + m238l1)-(1 - ep)

— m2(EC1+ EC2- lvep

{(EC1+ EC2-

61}
2
dm2:= ml-(m1-62+ m2-81) «(1-ep)

1
[ 2.m2(EC1+ EC2-(1 + ep) J 2
m1:(m182 + m238l)-(1 — ep)

dm2=4.19x 10 4

1+ep
m1(m%82 + m2381)-(1 - ep)
1

m2

dEC1:=

[ 2.m2(EC1+ EC2-(1 + ep) } 2
m2(m%82 + m2381)-(1 - ep)

dEC1= 3.837x 10 >

l1+ep
m1(m%:82 + m2381)-(1 - ep)
1

[ 2.m2(EC1+ EC2-(1 + ep) } 2
m2(m182 + m2381)-(1 - ep)

m2

dEC2:=

dEC2= 3.837x 10 >

~|:m22~(EC1+ EC2. 1+ep }

ml-(m1-62 + m2-61)2~(1 —ep)

dél :=

1
2.m2(EC1+ EC2-(1 + ep) ]2
m(m182 + m28l)-(1 - ep)

dél =-0.913

m2(ECL+ EC2- 1+ ep2
(m1-82 + m2-61) (1-¢ep)

1

2.m2(EC1+ EC2-(1 + ep) ]2
m2(m1&2 + m28l)-(1 - ep)

dé2 .=

d& =-0.868
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EC1+ EC2 l+ep

m2 + m2(EC1+ EC2-
o m1(m1& + m251)-(1 — ep) mL(m1a + m23)-(1 - ep)?

1
[ 2.m2(EC1+ EC2-(1 + ep) } 2
ml(ml-62+ m2~81)-(1—ep)

dep =4.841

2 2 2 2 2 2 2 2 2
CAv1 ::Jdm12~cm + dmZZGm + dEClZGECl + dECfGECZ + dél ‘0§81 + d&2 ‘O + depZGep

oAVl = cAvl«StdEn

G py1 = 0.438
AV = 0.859
AVl _
dmili= Lz dmil= 2.266x 10 °
m
1 B
dm12:= (-Av1)- 1= dm12= —2.155x 10 >
m?
ml
d1AvL = d1AvL = 0.951
m

2 2 2 2
Gsz::Jdmllz-cm + dm122-0m + d1Avl ~(5AV1Z

8AV2 =5, o StAEN

Gy = 0.424
NAv2 =0.832
. oAVl i . 0AV2 i
RatioAvl := H RatioAvl = 17.748% RatioAv2 := E RatioAv2 = 18.074
\Y \Y
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Appendix I: Analysis of contributions to overall uncertainty in individual input parameters

These results are derived from the analytical model (Appendix H) using raw input data from RICSAC tests (Appendix D) and discussed in
Chapter 5. Results have been arranged so that similar impact configurations are grouped together.

Table I.1: Overall result and uncertainty in Av; and Av,

Overall uncertainty generated using 95% confidence limits on parameters as described by Smith & Noga [108]

Collision Type 60° Front to side 90° Front to side 10° Front to front 10° Front to rear
Test number 1 6 7 8 9 10 11 12 3 4 5
Avl (m/s) 5.256 5.196 6.059 6.553 6.652 10.947 9.729 15.949 3.026 6.588 5.903
Av2 (m/s) 7.881 8.521 13.187 6.231 3.063 5.299 6.101 11.07 4.799 10.284 | 10.735
Uncertainty Avl % | 22.853 | 28.486 | 28.536 | 19.088 | 23.333 | 22.144 | 10.728 6.354 14.541 9.723 9.917
Uncertainty Av2 % | 23.098 | 28.909 | 29.415 | 19.388 | 23.945 | 22.774 11.55 7.665 15.129 | 10.553 | 11.095
Table I.2: Effect of uncertainty in crush measurements 6C on Av; and Av, (%)
Collision Type 60° Front to side 90° Front to side 10° Front to front 10° Front to rear
Test number 1 6 7 8 9 10 11 12 3 4 5
+0.01 m 1.013 1.057 1.054 0.826 0.947 0.626 0.327 0.27 0.613 0.332 0.417
+0.05m 5.067 5.285 5.272 4.129 4.735 3.131 1.635 1.349 3.065 1.66 2.084
+0.0762 m 7.723 8.054 8.034 6.293 7.216 4.771 2.494 2.054 4.672 2.531 3.176
+0.10 m 10.135 | 10.57 | 10.543 8.259 9.469 6.262 3.269 2.698 6.13 3.32 4.169
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Table I.3: Effect of uncertainty in damage length measurements 6L on Av; and Av, (%)

Collision Type 60° Front to side 90° Front to side 10° Front to front 10° Front to rear
Test number 1 6 7 8 9 10 11 12 3 4 5
+0.01m 0.21 0.219 0.156 0.182 0.29 0.291 0.437 0.253 0.47 0.355 0.339
$0.05m 1.03 1.096 0.781 0.909 1.451 1.455 2.185 1.263 2.33 1.776 1.697
$0.10 m 2.07 2.192 1.563 1.818 2.902 2.909 4.37 2.526 4.66 3.552 3.394
$0.15m 3.1 3.287 2.344 2.727 4.353 4.364 6.55 3.788 6.99 5.328 5.091
+0.1524 m 3.148 3.34 2.382 2.771 4.422 4.434 6.66 3.849 7.104 5.413 5.173
+0.20 m 4.13 4.383 3.126 3.636 5.803 5.818 8.74 5.051 9.32 7.103 6.788
Table 1.4: Effect of uncertainty in mass measurements ém on Av; (%)
Collision Type 60° Front to side 90° Front to side 10° Front to front 10° Front to rear
Test number 1 6 7 8 9 10 11 12 3 4 5
+10 kg 0.41 0.473 0.642 0.362 0.65 0.647 0.507 0.506 0.426 0.417 0.488
+25 kg 1.02 1.182 1.606 0.905 1.626 1.618 1.267 1.266 1.066 1.044 1.219
+50 kg 2.05 2.363 3.211 1.811 3.252 3.237 2.534 2.532 2.132 2.087 2.438
+100 kg 4.1 4.727 6.423 3.622 6.504 6.473 5.068 5.064 4.263 4.174 4.875
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Table 1.5: Effect of uncertainty in mass measurements ém on Av, (%)

Collision Type 60° Front to side 90° Front to side 10° Front to front 10° Front to rear
Test number 1 6 7 8 9 10 11 12 3 4 5
+10 kg 0.95 1.093 1.565 0.77 1.257 1.245 0.995 0.996 0.938 0.921 1.108
+25 kg 2.38 2.731 3.913 1.925 3.144 3.114 2.487 2.489 2.345 2.302 2.77
+50 kg 4.76 5.463 7.826 3.85 6.287 6.277 4.974 4.978 4.69 4.604 5.54
+100 kg 9.52 10.926 15.652 7.699 | 12.574 12.455 9.947 9.956 9.38 9.208 11.08
Table I.6: Effect of uncertainty in PDOF measurements OPDOF on Av; and Av, (%)
Collision Type 60° Front to side 90° Front to side 10° Front to front 10° Front to rear
Test number 1 6 7 8 9 10 11 12 3 4 5
$]1° 1.046 1.337 1.342 0.804 1.006 0.99 0.356 0.144 0.521 0.338 | 0.329
+5° 5.23 6.686 6.708 4.018 5.032 4.949 1.782 0.721 2.604 1.688 1.646
+10° 10.6 13.372 13.416 8.035 10.065 9.898 3.563 1.441 5.209 3.376 3.291
+15° 15.7 20.057 20.124 | 12.053 | 15.097 | 14.847 5.345 2.162 7.813 5.064 | 4.937
+20° 20.9 26.743 26.832 16.071 20.13 19.796 7.126 2.882 10.417 6.752 6.583
+25° 26.1 33.429 33.54 20.089 | 25.162 | 24.745 8.908 3.603 13.022 8.44 8.228
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Table I.7: Effect of uncertainty in position of point of application &d on Av, and Av, (%)

Collision Type 60° Front to side 90° Front to side 10° Front to front 10° Front to rear

Test number 1 6 7 8 9 10 11 12 3 4 5
+0.01m 0.14 0.171 0.174 0.165 0.296 0.277 0.084 0.023 0.12 0.089 0.1
+0.05m 0.7 0.857 0.873 0.824 1.479 1.385 0.42 0.117 0.598 0.446 0.502

+0.0762 m 1.081 1.307 1.33 1.256 2.255 2111 0.64 0.178 0.911 0.68 0.765
+0.10 m 1.4 1.716 1.747 1.648 2.959 2.771 0.84 0.234 1.196 0.892 1.004
$0.20 m 2.8 3.445 3.508 3.299 5.925 5.55 1.682 0.469 2.394 1.786 2.012
Table 1.8: Effect of uncertainty in radii of gyration 8k on Av; and Av, (%)

Collision Type 60° Front to side 90° Front to side 10° Front to front 10° Front to rear

Test number 1 6 7 8 9 10 11 12 3 4 5
+0.01 m 0.01 0.078 0.077 0.095 0.206 0.173 0.016 0.001 0.034 0.018 0.018
+0.05m 0.41 0.391 0.387 0.476 1.03 0.863 0.079 0.005 0.168 0.092 0.09
+0.10 m 0.82 0.782 0.774 0.952 2.06 1.727 0.159 0.011 0.336 0.184 0.18
+0.20 m 1.65 1.565 1.549 1.903 4.119 3.454 0.318 0.022 0.67 0.368 0.361
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Table 1.9: Effect of uncertainty in A stiffness coefficient A on Av,; and Av, (%)

Collision Type 60° Front to side 90° Front to side 10° Front to front 10° Front to rear

Test number 1 6 7 8 9 10 11 12 3 4 5
5% 1.33 1.073 1.061 2.223 2.065 1.256 1.098 0.809 2.419 1.293 1.473
+10% 2.67 2.146 2.122 4.445 4.13 2.511 2.195 1.619 4.839 2.587 2.947
+15% 3.998 3.22 3.184 6.668 6.195 3.767 3.293 2.428 7.258 3.88 4.42
+20% 5.33 4.293 4.245 8.891 8.259 5.022 4.39 3.237 9.678 5.173 5.894

Table 1.10: Effect of uncertainty in B stiffness coefficient 8B on Av; and Av, (%)

Collision Type 60° Front to side 90° Front to side 10° Front to front 10° Front to rear

Test number 1 6 7 8 9 10 11 12 3 4 5
5% 0.72 1.388 1.314 0.877 0.336 0.636 0.717 0.996 0.657 0.65 0.855
+10% 1.44 2.776 2.682 1.753 0.672 1.272 1.435 1.992 1.314 1.301 1.709
+15% 2.16 4.164 3.942 2.63 1.008 1.909 2.152 2.988 1.971 1.951 2.564
+20% 2.87 5.553 5.257 3.507 1.344 2.545 2.869 3.984 2.628 2.602 3.419
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Table I.11: Overall uncertainty in Av; and Av, (Constrained adjustment factor

Overall uncertainty generated using 95% confidence levels described by Smith & Noga [108] and adjustment factor limited to 2

Collision Type 60° Front to side
Test number 1 6 7
Avl (m/s) 5.256 5.196 6.059
Av2 (m/s) 7.881 8.521 13.187
Uncertainty Avl % | 14.636 14.645 12.742
Uncertainty Av2 % | 15.254 15.451 14.605

Table I.12: Effect of uncertainty in PDOF measurements 6PDOF on Av, and Av, (%) (Constrained adjustment factor)

Collision Type 60° Front to side

Test number 1 6 7
*1° 1.046 1.377 1.342
+5° 4.642 6.213 3.844
+10° 6.676 7.568 5.404
+15° 9.108 9.402 7.297
+20° 11.619 11.487 | 9.323
+25° 14.344 13.71 11.41
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Appendix J: Mathcad Monte Carlo Model to Determine Uncertainty in Av (RICSAC 8)

The Monte Carlo model to determine the uncertainty in DeltaV is developed in Chapter 6.

Monte Carlo Simulation for RICSAC 8

Standard error factor to convert 95% confidence limits to standard deviation:

StdErr:=1.%

Minimum value for uncertainty [using a small positive value avoids error in Mathcad function rnorm(...)]:

. —1F
minE:=1-10

Calculation of Crush Energy
Measurement Data

Vehicle 1 Vehicle 2
6.9 15.7
7.34 21.1
7.78 23.4
Cl:= C2:=
8.22 15
8.66 11.2
9.1 2

L:=7.6 (7.62cm is equivalent to 3 inches)

C
GC =
StdEn

o, = 3.888

Damage Length (L)
L1:=185. L2:=214.1

a:=152  (15.24cm is equivalent to 6 inches)

&
StdEmn

GLZ GL:7776

Mass
m1:=203: m2:= 213t

am:=5(
am

Cpqi= ———— o= 25.51
M™" StdEn m

MaxM1:=ml+ ar MaxM2:=m2+ ar
MinM1 :=m1- & MinM2 :=m2- &

Coefficient of Restitution

ep :=0..
%ep

(e} = _
&p = 0.0 ® " Stden COep = 0026
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Principal Directions of Force (PDOF)
(Base Side: O=Front, 90=right, 180=rear, 270=left)

BaseSidel:=C BaseSide2 := 9(
PDOF1:=-20.! PDOF2:=69.!
PDOF:=2(
PDOF

Y = c =10.204

PDOF™ "gi4Err PDOF
MaxPDOF1:= PDOF1+ 3PDOF MaxPDOF2:=PDOF2+ 3PDOF
MinPDOF1:=PDOF1—- &P DOF MinPDOF2:=PDOF2— P DOF

81 and 62 data

¢l :=—0.98557 (2 :=—77.446
d1:=2.4701 d2:=0.91163
_10
© 100
&d
O = o4 =0.051
d StdEmn d
k1:=1.5530 k2:=1.5529
&:=0.:
&k
o = o = 0.051
k StdEn k

Stiffness Coefficients

S =ity (Permits simultaneous adjustment of both coefficients)
BCoeff :=10%
Al :=623.! A2 :=250.!
Al :=8ACoeff-Al A2 :=5ACoeff - A2
A1 A2
OaAq = oaq =31.811 GAn = opan =12.781
AL stdEn Al A2 StdEn A2
B1:=23. B2:=34.¢
B1:=3BCoeff-B! B2 :=3BCoeff-B:
B1 B2
OoRp1:= opq=1.189 Opo .= opo=1.776
Bl StdEn Bl B2 StdEn B2
MaxAl := Al + A1 MaxA2 := A2 + 8AZ
MinAl :=Al — dAl MinA2 := A2 — A2
MaxB1:=B1 + 8] MaxB2:= B2 + &B:
MinB1:=B1- 8B: MinB2:=B2— 8B:
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Energy Range Calculations

Using variation in A & B Coefficients only, ie ignoring crush and PDOF variation

i:=0..4
%1 ::Z(Cli + Cl|+1) “2 ::Z(CZI * CZI+1)
i i
(xl:80 OLZZ 1591
2 2 2 )
31:=Z[(Cl,) +CLCL , + (C].Hl)} BZ:Z[(C%) +C2.C2 , + (CZHl)}
i i
Bq = 966.05 Bo =4.303x 103
212 BLlB;, Al |
E1:=O.O{[5 AT 2TPL 1}.& E1=2.611x 10’
2.B1 6 2 ) 5]
A2 B2B, A2a )|
E2::O.O{[5 o Bt 2N ZJ.LZ E2=2.12x 10'
2.B2 6 2 ) 5]
__5.(A1 coa1)? (BLe By (AL+ A1)-oq| 4] .
MaxE1:=0.0] + + = MaxE1= 2.872x 10
| 2(B1+ aB1) 6 2 ] 5]
“5.(A2 coa)? (B2rBdpy (A2+ 882)-05| | 5] .
MaxE2:=0.0] + + =L MaxE2= 2.332x 10
| 2(B2+ 882 6 2 ] 5]

N N = MinE1l=2.349x 10"
| 2(B1-8B1) 6 2 5

(a1 aar)2 (B1-8BD-By  (AL-8A1)-aq] (4]
MinEl::O.O{S(Al A1) 1 1| L1

(a0 can)?2  (B2-3B2-B, (A2 -8A2)-as] (-
MinE2:=O.O{5(AZ 82) 2, 2|.L2

N = MinE2= 1.908x 10"
| 2(B2-8B2) 6 2 5

MaxE1- E1

pRawRangeEl:= EE— pRawRangeE1l = 10%
MaxE2- E2

pRawRangeE2:= 0 pRawRangeE2 = 10%
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Energy Adjustment Calculations

(Ensures that energy adjustment factor neyer exceeds 2 as per CRASH)

CFli=min2,1+ tan[(PDOFl— BaseSidel).éj CF1=1.14
3
CF2:=min2,1 + tan[(PDOFZ— BaseSidez)-%J CF2=1.14
5
MaxCF1:= max CFLmin 2,1 + tan[(MinPDOFl— BaseSidel)-&J MaxCF1= 1.729
)
. . . T
MaxCF2:=max CF2min2,1 + tan[(MmPDOFZ— BaseS|de2)-1—80} MaxCF2=1.729
3
MinCFL:= mij CFL MaxCFL min 2,1 + tan[(MaxPDOFl— BaseSidel)~ﬁJ MinCF1= 1
3
MinCF2:=min CF2 MaxCF2mif 2,1 + tan[(MaxPDOFZ— BaseSide2)~§J MinCF2= 1
EC1:=ELCF: EC2:=E2CF;
EC1=2.975x 10" EC2=2.416x 10"
MaxEC1:= MaxELMaxCF. MaxEC2:= MaxE2MaxCF.
MiInEC1:= MinEX:MinCF: MinEC2:= MinE2MIinCF.
MaxEC1— EC1 MaxEC2— ECZ
RangeEC 1= aXET RangeEC 1= 66.908% RangeEC2:= aXTZ‘ RangeEC 2= 66.908%

Position of centroid calculations

Angle ¢ defined so that lateral variation is equal to &d

i 1= 220 agin[ X Sl = 2.32 502 1= 280 agin[ X &2 = 6.298
T d1i T d2
&gl &2
= =1.184 = =3.213
¢l StdEn o °¢2 StdEn i
T T
h1l:=d1-sinl (PDOF1+ ¢l) — h2 :=d2-sin| (PDOF2+ ¢2)- —
[( ) 180} [( ®) 180:|
hl=-0.905 h2 =-0.126

Gamma & Delta calculations

2 2
sl=14 ML &l = 1.339 =14+ 12 ®=1.007
k12 %a

vl:= v1=0.747 Y2 =

2 =0.993

Rgl-

1
ol
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Mean, Minimum and Maximum Results

Nominal Mean AV

22m2(EC1+ EC2-(1 + ep)
Avl =
m(m1& + m28l)-(1 - ep)

Avl = 6.553
Maximum Av
Maxavl — |2 M2(MaxECT+ MaxECY-(1 + ep)
m2:(m1:82 + m281)-(1 — ep)

MaxAv1 = 8.466

Minimum Av
Minav1 — | 2M2(MInEC1+ MInEC3-(1 + ep)

y  mi(m1&2+ m281)-(1-ep)
MinAvl = 5.823

Difference and Range
MaxDiff := MaxAv1 — Av] MaxDiff = 1.913

MinDiff := Avl — MinAv] MinDiff = 0.73

ml
AV2 :=Avl. —

m2
Av2 =6.231

m1

MaxAv?2 := MaxAvl —
mz

MaxAv2 = 8.05

MinAv2 := MinAvl-%

m
MinAv2 = 5.537
. MaxDiff .
pMaxDiff := pMaxDiff = 29.1934
Avl
S MinDiff A
pMiInDiff := pMinDiff = 11.136%
Avl
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Probability Calculations
(Assuming normal distribution of source data)

Number of data points:

Seed(Seed(5))

n :=1000(

Function to generate random distribution about mean value v with standard deviation sd truncated

to maximum variation of |.

RNormLinin,v,sd,l) :=

ret < rnorm(n,v,sd)
for ie0..last(ret)

€ <« reti

e < md(2-sd-I) + v —sd-l otherwise

reti<—e

ret

if ret, < (v+sd) A ret. > (v —sd-I)

Prevents occurrence of values outside range v - sd*l to v + sd*|

Function to generate random distribution about mean value v with standard deviation sd truncated at
lower end to zero and upper end to 2*v Prevents occurrence of values outside range 0 to 2*v

RNormZero(data,v,sd) :=

Crush Dimensions

RNorm Zero(

Cl1:=
RNormZero(n

VecL1:=mom(n,LL oy |

RNormZero(n Cl0 Gc

RNormZero(n Cl1 c

RNormZero(n Cl Ne;

)
)
)
Cl,, C)
o
)

RNormZero(n Cl5 G

ret < rnorm(n,v,sd)
for ie0..last(ret)

e « ret, if ret, < (2v) A ret > 0)

e « md(2-v) otherwise

reti<—e

ret

CLy.oc

C22:=

RNorm Zero(n C20 c)

RNormZergn. C2, . o¢)
RNormZerg(n, C2,. o
RNormZero(n C2;.0¢)
RNormZerg(n.C2,.0

3
RNorm Zero(n C25 Gc)

VeclL2:= rnorm(n ,L2, cl_)
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Mass
Vecml:= rnorm(n ,m1l cm)

maxml= 2.133x 103
minm1= 1.938x 10°

maxml=max'VVecmnl)
minml=mir(Mecm))
Stiffness Coefficients
R | |
VecAL := RNomLirfn, Al o7, 1.99

VecB1:=RNormLirfn, B1,0,1.96"

VecAl = rnorm(n,Al,cAl)

VecBl:= rnorm(n, B1, GBl)
maxAl:=maxVecAl) maxAl= 768.712
minAl:=min\VecAl)

maxB1:=maxVVecBl)
minBLl:=min(\VecB1)

minAl=491.828
maxBl= 27.601
minB1l= 18.468

Calculation of PDOF

VecPDOF1:= RNormLir(‘un,PDOF],cPDOF,Z)'
VecPDOF1:=morm(n,PDOFL 5ppof)
mMinPDOF1=min(VecPDOF]) minPDOF1=-59.385

mMaxPDOF1=maxXVecPDOF) maxPDOF k= 16.499

Energy Adjustment Factor

Standard unlimited adjustment factor calculation

3
VecCFl:{l + tan|:(VecPDOF1— BaseSidel)~§J }

Vecm2:= rnorm(n ,m2 cm)

maxm2= 2.253x 103
minm2= 2.039x 10°

maxmz:= max'Vecm?2)

minm2=min(Vecm?

VecA2 := RNomLirfn, A2, 6p5,1.9"

VecB2:= RNomLirfn, B2, o g 1.96)"

VecA2 := rnorm(n,AZ,cAz]
VecB2:= rnorm(n, B2, ('582)

mMaxA2:=max \VecA2) maxA2= 295.097

mMinA2 := min(VVecA2) minA2=204.35
maxB2=maxVVecB2) maxB2= 42.645
minB2:=min(VVecB2) minB2= 27.977

VecPDOF2:= RNormLirfn, PDOF2 op o 196"
VecPDOF2:=morm(n,PDOF2 5ppop)
minPDOF2=mir(VecPDOF3  minPDOF2= 33.699

mMaxPDOF2=maxVecPDOF) maxPDOF2=113.005

2
VecCF2::|:1 + tan|:(VecPDOF2+ BaseSide2)~§):| }

Function to provide random adjustment factors limited to a maximum value lim

2
MaxLimCRpdf ,side, lin) := [ret « {1 + tan[(pdf - side)-%)} }

for ie0..last(ret)

e« reti if reti < lim

reti<—e

ret

e < md(1) + 1 otherwise
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VecCF1:= MaxLimCEVecdPDOF 1 BaseSidel, 2)" VecCF2:= MaxLimCEVecd®DOF 2 BaseSide2, 2)"
mMinCFX=min(VecCFJ) minCF1=1 MinCF2=min(\VecCF2 minCF2=1
maxCF1=maxVVecCF1) maxCF1= 3.856 maxCF2=maxVVecCF2 maxCF2= 3.248

Moment arm calculations

Vecdl := rnorm(n,dl,cd) Vecd2 .= rnorm(n,dz,cd)

mind1:=min(\Vecdl) mindl=2.291 mind2:=min(\Vecd?2) mind2=0.721
maxdl:=maxVVecdl) maxdl= 2.66 maxd2:=maxVVecd?2) maxd2= 1.095

Vecdl := rnorm(n,¢1,c¢1) Vecd? := rnorm(n,dﬂ,cdﬂ)

mingl := mir( Vecyl) minjl = —5.934 ming2 := mir( Vecf) min2 = —81.823
maxil := max Vecdl) maxl = 3.487 max2 := max Vec(2) maxi2 = —72.772
Vechl :=[Vecdl-sin[(VecP DOF1+ Vec¢1)~§)ﬂ Vech2 :=[Vecd2-sin[(VecPDOF2+ Veodﬂ)~%l|
minh1:=min(\Vechl) minhl=-2.208 minh2:=min(\Vech2) minh2=-0.649
maxhl:=maxVechl) maxhl= 0.68 maxh2:=maxVech2) maxh2= 0.529

Gamma & Delta calculations

Veckl:= rnorm(n k1, ck) Veck2:= rnorm(n k2, Gk)
—_— —_—
2 2
Vecst = | 1+ et Ve = | 1+ JeNZ
Veckl2 Veck22
— —_—
Vecyl := Vecy2 :=
Vecdl Vecd?2
minl:=mir(Mecyl)  minl=0.314 min2:=mir(Mec2)  min2=0.846
maxl := ma>(Ve0y1] maxl =1 max2 := ma>(VecY2] max2 =1

Coefficient of Restitution

Vece := rnorm(n,ep ’Gep)
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Calculation of Energy
i:=0..4
Vecoy = ) (C11, + C11, )

Vecp, = Z[(Clli)z +C1LClL + (011”1)2],
i

: 2 VecBl-VecB; VecAl-Veco
VecEl:=|0.01 | 2VEAL 1, 1] VeclL1
2-VecB1 6 2 5

y

Vecop = ) (C23 + C22 )
i

Vecp, = Z[(czzl)z +C22:C22 , +(C23, lﬂ
i

2 VecB2VecB, VecA2-Veca.
5-VecA2 2 2| VeclL2
VecE2:=[0.0 alig + e
2-VecB2 6 2 5

dataVecEl :=histogram(100, VVecEl)

mMinEL:= mir(\VVecEl) minEl= 1.57x 104
MaxEL:= maxVecE1) maxE1l= 3.931x 10"
MeanE1 := mean(VecE1) MeanEL = 2.64x 10"

400 I I I I

300 -
dataVecEf1>200_ Hii I T
n

1001 -

0 -
15100 210° 25.10" 310* 3510" 4.0
dataVecEfo>
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Energy Adjustment
_— _—
VecEC1:=(VecEl VecCF)) VecEC2:= (VecE2 VecCF2

dataVecEC1 := histogram(100, VecECT)

MINEC T:= mir(VecECY) minEC 1= 1.587x 10*
maxECL=maxVVecECI) maxEC1= 1.03x 105
MeanEC1:=mean(VecEC)) MeanEC1 = 3.16x 104
800 I I I I I
6001 -
dataVecECf1>400_ T
n
200} —
0 1 |
o 210" 410* 610" 810" 1.10°0 1210
dataVecECf0>
Range\VecEC1:= maxEC1L- MeanEC] RangeVecEC 1= 7.144x 16"
DeviationEC1:=stdev (\VecECJ) DeviationEC1=6.767x 103
Prob95EC 1:= DeviationECE1. & Prob95EC 1= 1.326x 10*
Prob99EC: = DeviationECE2. 571 Prob99EC 1= 1.743x 10"
RangeEC1 _
PRANGEECT := ~angeE™ 2 PRaNGEEC1 = 2.117x 10 S %
MeanEC1
Prob95EC:
PPrObY5EC 1= — oo pProb95EC 1= 41.964%
MeanEC1
Prob99EC:
DPrOb99EC 1= o= pProb99EC 1= 55.153%
MeanEC1

215



Appendices Jon Neades

Probability Results

2-Vecm?2 (VecEC1+ VecEC2-(1 + ep)
Vecml(Vecm 1Vecd + Vecm2~Ve051)~(1 —ep)

VecAvl = j

VecAv2 .= (VecAvl- Veem 1)

Vecm?2
Vehicle 1 Analysis

data := histogram(100, VecAv1)

mimv1 :=mir(VecAv1) mimv1 = 5.356
maxv1 :=maxVecavl) maxAvl = 10.677
MeanAv1 := mean(Vecavl) MeanAv1 = 6.659
RangeAv1
RangeAvl :=maAvl — MeanAv] RangeAvl = 4.018 pRangeAvl .= ————
MeanAv1
pRangeAvl = 60.333
DeviationAv1 := Stdev(Vecavl) DeviationAv1 = 0.431
Prob95Av1
Prob95Av1 := DeviationAv1- 1. Prob95Av1 = 0.845 pProb95Avl ;.= ————
MeanAv1l
pProb95Av1 = 12.688/
Prob99Av1
Prob99Av1 := DeviationAv1-2.571 Prob9Avl =1.11 pProb99Avl .= ———
MeanAv1l
pProb9Av1 = 16.6768%
Kurtosisl :=kurt(VecAv1) Kurtosisl = 1.513
Skewl := skew(VecAvl) Skewl=0.543
600 T T T T T
500
400 . -
data V300
il
200
100
0 | |
5 6 7 8 9 10 11
data<0>

216



Appendices

Jon Neades

Vehicle 2 Analysis

data2 = histogram(lOO, VecAvZ)
Mimv2 :=mi r(Ve(‘AVZ)

MaxAv2 := ma>(VecAv1]
MeanAv2 := mean(VecAvl)

RangeAv2 := maxAv2 — Mean Avz

DeviationAv2 := Stdev(VecAvZ)

Prob95AV?2 = DeviationAv2-1. 9

Prob99Av?2 := DeviationAv2-2.57t

Kurtosis2 := kurt(VecAvZ)

Skew2:= skew(VecAvZ]

500

mimv2 =5.102

maxAv2 = 10.677

MeanAv2 = 6.659

400

data12< D
o

RangeAv2
RangeAv2 = 4.018 pRangeAv2 .= ———
Mean Av2
pRangeAv2 = 60.333%
DeviationAv2 = 0.409
Prob95Av2
Prob95Av2 = 0.802 pProb95AV2 .= ————
Mean Av2
pProb9sAv2 = 12.09%
Prob99Av?2
Prob9Av2 = 1.055 pProb99Av2 := TTODPRAve
Mean Av2
pProb9Av2 = 15.8381%
Kurtosis2 = 1.194
Skew2 = 0.505
T
|
9 10

dat a|2< 0

217



Appendices Jon Neades

Appendix K: Monte Carlo simulation data and results

Results for head-on into rigid barrier collision. These results are derived from the Monte Carlo

model shown in Appendix J and are discussed in Chapter 6.

Table K.1: Nominal values for single vehicle into barrier simulations

Parameter Vehicle 1 Barrier
C,t0Cq 0.1,0.2,04m -
L 1.35m -
m 1332 kg 10°% kg
PDOF 0° 0°
d 1.86 m Im
¢ 0° 0°
k 1.426 m 10°m
A 362 N/cm -
B 48.3 N/cm® -

Table K.2: Overall result and uncertainty in Av; and Av,

Using 95% confidence limits on parameters as described by Smith & Noga [108]

Collision Type Head-on into barrier
Test 0.1m 0.2m 0.4 m
Avl (m/s) 3.871 6.083 10.508
Uncertainty Avl % | 19.093 13.741 9.976

Table K.3: Effect of uncertainty in crush measurements 8C (%)

Collision Type Head-on into barrier
Test 0.1m 0.2m 0.4m
$0.01m 2.427 1.54 0.893
$0.05m 12.016 7.735 | 4.408
$0.0762 m 17.453 | 11.864 | 6.707
$0.10m 20.801 | 15.264 | 8.808
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Table K.4: Effect of uncertainty in damage length measurements 8L (%)

Collision Type Head-on into barrier

Test 0.1m 0.2m 04m
+0.01 m 0.368 0.377 0.486
+0.05m 1.84 1.859 1.856
+0.10 m 3.694 3.691 3.719
+0.15m 5.569 5.554 5.545
+0.1524 m 5.642 5.624 5.634
$0.20 m 7.47 7.45 7.402

Table K.5: Effect of uncertainty in mass measurements édm (%)

Collision Type Head-on into barrier
Test 0.1m 0.2m 04m
+10 kg 0.377 0.37 0.372
+25 kg 0.933 0.943 0.941
150 kg 1.877 1.883 1.891
+100 kg 3.724 3.792 3.827

Table K.6: Effect of uncertainty in PDOF measurements 6PDOF (%)

Collision Type Head-on into barrier
Test 0.1m 0.2m 04m
$1° 0.008 | 0.008 | 0.008
+5° 0.177 | 0.186 | 0.185
+10° 0669 | 0672 | 0.673
+15° 1.265 1.241 1.249
+20° 1.768 1.765 1.756
+25° 2.126 | 2.089 | 2.111
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Table K.7: Effect of uncertainty in position of point of application &d (%)

Collision Type Head-on into barrier
Test 0.1m 0.2m 0.4m
$0.01m 0.002 0.002 0.002
$0.05m 0.045 0.044 0.045
$0.10m 0.176 0.178 0.176
$0.20m 0.704 | 0.708 0.71

Table K.8: Effect of uncertainty in radii of gyration &k (%)

No individual effect on uncertainty due to zero rotation using nominal values.

Table K.9: Effect of uncertainty in A stiffness coefficient 6A (%)

Collision Type Head-on into barrier
Test 0.1m 0.2m 0.4m
5% 2.133 1.351 0.787
+10% 4.254 2.74 1.566
+15% 6.505 4.084 2.34
+20% 8.657 5.494 3.185

Table K.10: Effect of uncertainty in B stiffness coefficient 6B (%)

Collision Type Head-on into barrier
Test 0.1m 0.2m 04m
5% 0.358 1.144 1.704
+10% 0.716 2.27 3.418
+15% 1.063 3.396 5.132
+20% 1.405 4.495 6.868
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Appendix L: Analysis of contributions to overall uncertainty in individual input parameters

These results are derived from the Mathcad model (Appendix K) using raw input data from RICSAC tests (Appendix D). Results have been

arranged so that similar impact configurations are grouped together.

Table L.1: Overall result and uncertainty in Av,; and Av,

Overall uncertainty generated using 95% confidence limits on parameters as described by Smith & Noga [108]

Collision Type 60° Front to side 90° Front to side 10° Front to front 10° Front to rear
Test number 1 6 7 8 9 10 11 12 3 4 5
Avl (m/s) 5.256 5.196 6.059 6.553 6.652 10.947 9.729 15.949 3.026 6.588 5.903
Av2 (m/s) 7.881 8.521 13.187 6.231 3.063 5.299 6.101 11.07 4.799 10.284 10.735
Uncertainty Avl % | g 81 32.806 | 34.014 | 12.788 | 17.359 | 16.424 | 10.897 7.025 14.81 10.01 10.517
Uncertainty Av2% | 76798 | 32.847 | 34.127 | 12.833 | 17.256 | 16.291 | 10.798 6.916 14.904 | 10.133 | 10.702
Table L.2: Effect of uncertainty in crush measurements 6C on Av; and Av, (%)
Collision Type 60° Front to side 90° Front to side 10° Front to front 10° Front to rear
Test number 1 6 7 8 9 10 11 12 3 4 5
+0.01 m 1.29 1.242 1.248 1.04 1.285 0.811 0.42 0.327 0.823 0.443 0.536
+0.05m 6.365 6.223 6.249 5.254 6.487 4.101 2.127 1.65 4.044 2.247 2.696
+0.0762 m 9.688 9.39 9.432 7.852 9.782 6.228 3.196 2.511 6.124 3.374 4.082
+0.10 m 12.508 12.276 12.3 10.375 12.725 | 8.151 4.247 3.309 8.106 4.412 5.408
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Table L.3: Effect of uncertainty in damage length measurements &L on Av; and Av, (%)

Collision Type 60° Front to side 90° Front to side 10° Front to front 10° Front to rear
Test number 1 6 7 8 9 10 11 12 3 4 5
$0.01m 0.205 0.22 0.159 0.186 0.297 0.298 0.446 0.258 0.461 0.362 0.335
$0.05m 1.03 1.093 0.788 0.915 1.463 1.466 2.187 1.271 2.324 1.778 1.678
$0.10m 2.101 | 2.183 | 1553 | 1.822 | 2913 | 2919 | 4351 | 2.526 4.66 3.538 | 3.409
$0.15m 3.106 3.307 2.348 2.716 4.334 4.346 6.621 3.779 6.898 5.29 4.032
+0.1524 m 3.153 3.366 2.398 2.777 4.391 4.409 6.706 3.852 7.111 5.386 5.122
$0.20m 4135 | 4358 | 3.091 | 3.605 5.77 5781 | 8708 | 5007 | 9.357 | 7.106 | 6.843
Table L.4: Effect of uncertainty in mass measurements &dm on Av; (%)
Collision Type 60° Front to side 90° Front to side 10° Front to front 10° Front to rear
Test number 1 6 7 8 9 10 11 12 3 4 5
+10 kg 0.408 0.468 0.638 0.363 0.653 0.65 0.501 0.508 0.426 0.417 0.487
125 kg 1.028 1.202 1.591 0.898 1.643 1.607 1.278 1.256 1.056 1.031 1.288
150 kg 2.047 2.37 3.202 1.803 3.242 3.226 2.521 2.522 2.124 2.103 2.433
+100 kg 4.097 4.708 6.356 3.579 6.572 6.418 5.054 5.01 4.274 4.169 4.866
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Table L.5: Effect of uncertainty in mass measurements ém on Av, (%)

Collision Type 60° Front to side 90° Front to side 10° Front to front 10° Front to rear
Test number 1 6 7 8 9 10 11 12 3 4 5
10 kg 0.537 0.609 0.873 0.391 0.497 0.493 0.431 0.667 0.489 0.485 0.594
125 kg 1.351 1.544 2.193 0.982 1.264 1.232 1.104 1.09 1.203 1.203 1.496
50 kg 2.704 3.051 4.456 1.987 2.517 2.484 2.179 2.202 2.451 2.44 2.954
100 kg 5.367 6.064 8.834 3.928 5.026 4.924 4.307 4.356 4.845 4.855 5.899
Table L.6: Effect of uncertainty in PDOF measurements 6PDOF on Av; and Av, (%)
Collision Type 60° Front to side 90° Front to side 10° Front to front 10° Front to rear
Test number 1 6 7 8 9 10 11 12 3 4 5
1° 0.906 1.193 1.172 0.39 0.598 0.63 0.351 0.173 0.565 0.37 0.376
15° 4.573 5.988 5.985 1.947 3.035 3.175 1.761 0.884 2.841 1.83 1.844
$10° 9.527 12.437 12.548 3.867 5.903 6.415 3.515 1.771 5.541 3.564 3.687
15° 15.193 | 20.222 | 20.575 | 5.735 8.911 | 9.723 | 5.241 | 2.755 7.979 | 5.216 | 5.406
$20° 23.325 | 30.842 | 30.928 7.599 11.652 13.16 6.992 3.682 10.208 6.761 7.095
$25° 38.489 | 52.151 | 58.887 11.008 16.272 18.82 8.638 4.759 12.194 8.094 8.522
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Table L.7: Effect of uncertainty in position of point of application &d on Av; and Av, (%)

Collision Type 60° Front to side 90° Front to side 10° Front to front 10° Front to rear
Test number 1 6 7 8 9 10 11 12 3 4 5
+0.01m 0.136 0.144 0.139 0.162 0.294 0.276 0.084 0.025 0.111 0.076 0.073
+0.05m 0.687 0.722 0.697 0.818 1.477 1.392 0.42 0.133 0.545 0.389 0.367
+0.0762 m 1.063 1.1 1.076 1.249 2.253 2.114 0.647 0.21 0.841 0.59 0.566
$0.10 m 1.363 1.445 1.41 1.64 2.952 2.791 0.86 0.289 1.106 0.775 0.738
$0.20 m 2.718 2.869 2.789 3.26 5.808 5.405 1.751 0.756 2.231 1.585 1.508
Table L.8: Effect of uncertainty in radii of gyration 6k on Av; and Av, (%)
Collision Type 60° Front to side 90° Front to side 10° Front to front 10° Front to rear
Test number 1 6 7 8 9 10 11 12 3 4 5
+0.01m 0.083 0.078 0.077 0.095 0.204 0.174 0.016 0.001 0.033 0.019 0.018
+0.05m 0.412 0.391 0.39 0.482 1.035 0.866 0.08 0.005 0.168 0.092 0.09
+0.10 m 0.826 0.785 0.779 0.958 2.091 1.756 0.16 0.011 0.335 0.185 0.183
+0.20 m 1.693 1.603 1.613 1.961 4.23 3.554 0.335 0.023 0.695 0.383 0.387
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Table L.9: Effect of uncertainty in A stiffness coefficient 8A on Av; and Av, (%)

Collision Type 60° Front to side 90° Front to side 10° Front to front 10° Front to rear

Test number 1 6 7 8 9 10 11 12 3 4 5
+5% 1.328 1.072 1.065 2.244 2.061 1.25 1.086 0.814 2.397 1.282 1.474
+10% 2.647 2.137 2.113 4.451 4.14 2.509 2.202 1.606 4.829 2.587 2.945
+15% 3.997 3.195 3.179 6.623 6.185 3.756 3.236 2421 7.274 3.874 441
+20% 5.325 4.309 4.233 8.867 8.271 5.008 4.411 3.256 9.887 5.231 5.936

Table L.10: Effect of uncertainty in B stiffness coefficient 8B on Av; and Av, (%)

Collision Type 60° Front to side 90° Front to side 10° Front to front 10° Front to rear

Test number 1 6 7 8 9 10 11 12 3 4 5
5% 0.726 1.384 1.315 0.881 0.34 0.635 0.715 0.993 0.659 0.651 0.85
+10% 1.445 2.788 2.623 1.773 0.677 1.27 1.436 1.988 1.326 1.294 1.693
+15% 2.168 4.164 3.917 2.648 1.046 1.898 2.139 2.961 2.007 1.931 2.574
+20% 2.875 5.565 5.292 3.58 1.446 2.506 2.84 3.999 2.768 2.599 3.39
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Appendix M: Comparison of energy adjustment factors using RICSAC test data

This data is used in Chapter 7 section 7.6 where a new model to determine the pre-impact

speeds of vehicles is described and validated using the data shown below.

Table M.1: Pre-adjusted values and angles

Unadjusted (J) Impact Angle Angle a (°) Angle B (°)
Test Vehl Veh?2 ¥ Vehl Veh?2 Vehl Veh2
1 33877 | 27287 120 11.3 41.3 30.1 29.9
2 46071 | 92096 120 11.7 41.7 30.1 29.9
3 11842 | 15202 100 14.1 4.1 0.0 10.0
4 39225 | 88067 100 11.1 11 0.0 10.0
5 10049 | 94083 100 11.6 1.6 0.0 10.0
6 14541 | 38550 120 11.0 41.1 30.0 29.9
7 23600 | 49562 120 12.7 42.7 30.0 30.0
8 26105 | 21200 90 19.0 19.0 45.1 44.9
9 15321 7618 90 21.8 21.8 45.0 45.0
10 34493 | 22242 90 25.3 25.3 45.1 44.9
11 44616 | 61216 171 2.9 11.9 4.6 4.4
12 155207 | 148443 171 1.0 8.0 25 4.5

Table M.2: Standard energy adjustment factors

Adjustment Factor

Adjusted Energy (J)

1+tan’ ()

Test Vehl Veh?2 Vehl Veh?2
1 1.04 1.77 35229 48347
2 1.04 1.79 48047 165203
3 1.06 1.01 12589 15280
4 1.04 1.00 40734 88100
5 1.04 1.00 10473 94156
6 1.04 1.76 15090 67880
7 1.05 1.85 24799 91765
8 1.12 1.12 29201 23714
9 1.16 1.16 17772 8837
10 1.22 1.22 42200 27212
11 1.00 1.04 44730 63935
12 1.00 1.02 155254 151375
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Table M.3: Calculated results using standard energy adjustment

Closing Speed (m/s) Pre-Impact Speed (m/s)
Test Normal | Tangential Total Vehl Veh2
1 15.2 5.2 16.0 9.2 9.3
2 24.3 8.1 25.6 14.8 14.8
3 8.2 2.1 8.5 8.5 0.0
4 17.3 34 17.6 17.6 0.0
5 17.0 35 17.3 17.3 0.0
6 16.3 5.6 17.3 10.0 10.0
7 22.9 7.1 24.0 13.9 13.9
8 11.4 5.6 12.6 8.9 9.0
9 11.2 4.8 12.2 8.6 8.6
10 17.5 6.3 18.6 13.1 13.2
11 16.2 -2.1 16.3 8.0 8.4
12 27.1 -1.7 27.1 13.6 13.7

Table M.4: New energy adjustment factor
The new energy adjustment factor is described in Chapter 4. Note that restitution (e, = 0.3) was

applied to tests 8,9 and 10. Adjusted restitution values were calculated using equations (4.30)

and (4.28)
Adjusted Adjustment Factor Adiusted Energy ()
restitution 1+tan(e)tan(p)(1—e,)/ (1—e,)
Test e, e Vehl Veh?2 Vehl Veh?2
1 0 0 1.116 1.506 37795 41089
2 0 0 1.120 1.513 51592 139366
3 0 0 1.0 1.013 11842 15394
4 0 0 1.0 1.003 39225 88368
5 0 0 1.000 1.005 10049 94545
6 0 0 1.112 1.502 16172 57886
7 0 0 1.130 1.533 26670 75983
8 0.3605 | 0.1237 1.474 1.470 38480 31159
9 0.3621 | 0.1448 1.536 1.536 23537 11702
10 0.3615 | 0.1703 1.616 1.612 55742 35861
11 0 0 1.004 1.016 44798 62209
12 0 0 1.001 1.011 155326 150079
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Table M.5: Calculated results using new energy adjustment

Closing Speed (m/s)

Pre-Impact Speed (m/s)

Test Normal | Tangential Total Vehl Veh2
1 14.7 5.0 15.6 9.0 9.0
2 23.0 7.6 24.2 14.0 14.0
3 8.1 2.0 84 8.4 0.0
4 17.2 34 17.6 17.6 0.0
5 17.0 35 17.3 17.3 0.0
6 15.5 5.3 16.3 9.4 9.4
7 215 6.7 225 13.0 13.0
8 13.0 6.4 14.5 10.2 10.3
9 12.9 55 14.0 9.9 9.9
10 20.1 7.2 21.3 15.1 15.1
11 16.1 -2.1 16.2 8.0 8.3
12 27.0 -1.7 27.1 13.5 13.6
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