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Abstract 

Abstract 

The change of a vehicle‟s velocity due to an impact, DeltaV (v) is often calculated and 

used in the scientific investigation of road traffic collisions.  Two types of model are in 

common use to achieve this purpose, those based on the conservation of linear and 

angular momentum and the CRASH model which also considers the conservation of 

energy.  It is shown that CRASH and major implementations of the momentum models  

are equivalent provided certain conditions are satisfied.  Explicit conversions between 

the main variants of the models are presented.  A method is also presented which 

describes a new formula for determining the total work performed in causing crush to a 

particular vehicle.  This has the advantage of incorporating restitution effects and  

yields identical results to the momentum only models.  

Although the CRASH model has received adverse criticism due to perceived 

inaccuracies in the results, little work has been performed to determine the theoretical 

limitations on accuracy.  This thesis rectifies that shortcoming.  A Monte Carlo 

simulation and analytical model are developed here to provide two independent 

methods for determining the overall accuracy of the CRASH method.  The principal 

direction of force was found to be the most likely to introduce error based on the 

CRASH assessment.  It is shown how this and other sources of error in the CRASH 

model can be quantified for a particular collision suggesting priorities for minimising the 

overall uncertainty.  The data from a series of well known crash tests are used with 

each of the models to provide comparison and validation data. 

It is recognised that without additional data velocity change is of limited use for forensic 

investigation.  However DeltaV can be used as a proxy for acceleration and is 

particularly useful in studies involving injury causation.  A method is also presented 

here which uses the change in velocity sustained by a vehicle in a planar collision to 

estimate the velocities of a vehicle before and after a collision.  This method relies 

solely on conservation laws and is also applicable to situations where the coefficient of 

restitution is non-zero.  An extension to the method is also described which allows an 

initial estimate to be modified to generate more realistic directions of force.  This 

extension has the desirable effect of reducing uncertainty in the estimation of the 

direction of force which significantly improves the overall accuracy.   
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1 Introduction 

 

Chapter 1 

 

Introduction 

 

1.1 Objectives 

In this Chapter the motivation behind this research is explained.  The scope and limits 

of the research are also described.  The original contribution made by this research is 

summarised and criteria are defined by which this work can be evaluated. 

  

1.2 Scope of the thesis 

Two main models are currently used to forensically analyse road vehicle collisions.  

The first type of model is based on the conservation of linear and angular momentum 

and is exemplified by the models by Brach [11], Ishikawa [43] and Steffan [111].  The 

second type is the CRASH algorithm as described by McHenry [65] and Smith [105].  

Solution of the momentum models requires the post-impact trajectories and velocities 

of each vehicle.  Such data is frequently obtained from ephemeral evidence at the 

scene, usually tyre marks from which the post-impact trajectories and velocities can be 

determined.  In the absence of such scene data solutions using the momentum models 

become impractical.  CRASH takes as input the vehicle crush damage from which an 

estimate of the change in velocity (DeltaV or Δv) of each vehicle can be obtained.  The 

increased use of ABS braking systems has led to an increase in the number of 

collisions where insufficient scene data exists to perform momentum based 

calculations.  This leads to an increased reliance on the CRASH calculations. 
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Criticism has been levelled by Brach [11] and others [132] concerning the overall 

accuracy of CRASH and its dependence on user estimated values, primarily the 

principal direction of force (PDOF).  Brach [9] also expresses doubt over the inclusion 

of an energy adjustment factor which he claims does not have a sound theoretical 

basis and may be somewhat arbitrary.  It is important to explore these criticisms and to 

quantify how these factors affect the results of calculations. 

At present CRASH does not provide an estimate of the actual velocities, just the 

DeltaV.  A substantial extension to the CRASH model will be to derive a new method 

whereby the actual velocities of the vehicles can be determined.  This innovation will 

increase the application of CRASH to real-world collisions and will represent a 

significant advancement within this field.   

The main aims of this research are then threefold and can be summarised as follows 

 To quantify factors affecting accuracy of DeltaV and predicted speeds 

 To determine the relevance and accuracy of energy adjustment factors in 

CRASH calculations  

 To develop a method to determine actual vehicle velocities from DeltaV values 

1.3 Research Objectives 

The main aims of this thesis can be subdivided into a series of objectives.  For 

evaluation purposes these objectives are listed below 

 Determine how the various impact phase models are interrelated. 

 So that consistency can be achieved, describe a systematic method to 

determine crush damage profiles.   

 Determine whether the energy adjustment factor commonly used by CRASH 

accurately models reality. 

 If not, determine whether there an alternative adjustment factor which can be 

utilised or developed. 

 Determine the overall accuracy that can be expected from CRASH analyses. 

 Determine the most significant factors affecting the accuracy of CRASH. 

 Ascertain whether it is possible to determine the actual velocities of vehicles 

from DeltaV values. 

 Describe techniques which can be used or developed to reduce uncertainty in 

the most significant factors affecting accuracy.  
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1.4 Limitations 

This research considers only the impact phase of a collision; the pre and post impact 

phases are well documented elsewhere.  Since the majority of impact phase models in 

use are planar, only planar models are considered in this work.  In practice this is not 

unduly limiting since the majority of road vehicle collisions are essentially planar in 

nature. 

 

1.5 Original contributions 

The original contributions provided by this research are as follows 

1. It is shown that the momentum based models of Brach [11] and Ishikawa [43] 

are equivalent.  It is shown that the CRASH algorithm can be separated into two 

distinct parts.  The first determines the amount of work done in causing crush.  

The result of the first part is then used as input into the second part which 

determines the change in velocity of each vehicle.  Significantly it is shown that 

provided that certain criteria are met, namely that the impact plane is orientated 

perpendicular to the impulse, the second part of the CRASH model is also 

equivalent to the momentum models and yield identical results.  Explicit 

methods of converting between the various models are described. 

 

2. The measurement protocols used to systematically determine crush energy are 

summarised and consolidated.  A new technique is demonstrated to cater for 

collisions where one or other vehicle is significantly bowed.      

 

3. It is shown that the standard energy adjustment factor used by the first part of 

CRASH and described by McHenry [65] does not generate the same energy 

values as predicted by the models of  Brach [11] or Ishikawa [43].  An 

alternative energy adjustment factor is developed which does produce energy 

values which match those predicted by the momentum models. 

 

4. The accuracy of CRASH is explored in detail and the major factors affecting 

accuracy are identified.  Two methods of analysing accuracy are considered, a 

purely analytical method and a Monte Carlo simulation.  It is found that both 
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methods yield similar results.  The overall accuracy of certain types of collisions 

are found to be inherently less accurate than other types of collisions. 

 

5. A method to determine actual vehicle velocities from DeltaV values is 

developed and validated against a well-known series of test collisions. The new 

method does not rely solely on CRASH generated DeltaV values, but can be 

used with DeltaV values derived from any other technique.  This new method 

provides a significant enhancement to the overall knowledge in this area.   

 

6. It is also shown that the method to determine actual vehicle speeds can be 

utilised to provide a better estimate of the PDOF values applicable to each 

vehicle.  This substantially improves the overall accuracy of CRASH.  

 

7. The final contribution of this work is to provide a significant theoretical basis 

upon which further research can be built in the area of road vehicle collisions. 

 

1.6 Organisation of the thesis 

The remainder of this thesis is organised as follows 

 Chapter 2 provides an overview of the existing research in this area and shows 

the equivalence of the models considered by this research. 

 Chapter 3 provides a description of the measurement protocols designed to 

obtain crush measurements.  This Chapter aims to consolidate the existing 

protocols from a wide variety of sources and discuss differences between them.  

An extension to the protocols is described resulting in a new protocol to 

consistently and accurately measure significantly bowed vehicles. 

 Chapter 4 describes existing energy adjustment factors and shows how they 

can be related to results obtained using the momentum models.  It is shown 

that the existing adjustment factors do not match the results obtained from 

momentum models.  A new adjustment factor is developed which does match 

the results from momentum models.  The results of applying this adjustment 

factor to real-world collisions is explored in brief in this Chapter with a more 

complete analysis in Chapter 7. 



1. Introduction   Jon Neades 

5 

 Chapter 5 provides an analysis of the accuracy that can be expected from the 

CRASH algorithm using analytical techniques.  A model is developed using 

Mathcad and applied to a series of well-known test collisions.   

 Chapter 6 describes a Monte Carlo simulation of the CRASH algorithm.  A 

Mathcad model is developed to perform the simulation.  The results from a well-

known test series are analysed using the simulation model and compared with 

the analytical model presented in Chapter 5.   

 Chapter 7 shows how changes in velocity data can be used to determine the 

actual velocities of vehicles in a collision.  For validation the method is applied 

to a series of test collisions using both the standard energy adjustment factor 

and the new energy adjustment factor developed in Chapter 4 

 Chapter 8 summarises the conclusions reached by this research.  The research 

is evaluated and suggestions are made for further work in this area.  

 The appendices contain much of the data obtained as a result of this research 

and listings of the Mathcad models used in Chapters 5 and 6. 

 

1.7 Summary 

This Chapter has explained the motivation and scope for this research.  A summary of 

the contributions to knowledge are described together with an outline of the thesis and 

the criteria by which this work can be evaluated.  In the next Chapter a summary of the 

existing research in this field is presented. 

 

 



6 

2 Crash Phase Models 

 

Chapter 2 

 

Crash Phase Models 

 

2.1 Objectives 

In this Chapter the scope of the current research is outlined to provide a description of 

the main crash phase models in current use.  The strengths and weaknesses of each 

model are highlighted and it is demonstrated how the models are interrelated. 

 

2.2 Introduction 

The forensic investigation of collisions between vehicles is a relatively recent pursuit 

although the theory underlying such investigations has a much longer history.  One of 

the earliest references to collision theory is Thomas Harriot‟s manuscript on the Theory 

of Impacts which is dated to 1619 [86].  In 1687 Newton published his Philosophiae 

Naturalis Principia Mathematica which forms the basis of impact theory and also 

modern crash investigation.  A useful reference describing the current theory is 

provided by Stronge [113] 

From the perspective of a forensic investigator a collision can be considered as 

comprising three main phases.  There is an initial pre-impact phase where the vehicles 

move towards impact, the collision phase itself where the vehicles interact with each 

other and finally a post-impact phase where the motion of the vehicles from impact 

towards rest is considered.   
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The pre and post impact phases are concerned mainly with the analysis of tyre and 

other marks on the road surface.  Techniques to establish the speeds of vehicles from 

these marks are well established.  Simple examples are described in [104] or [102]  

Such techniques yield considerable information about the behaviour of vehicles during 

the pre and post impact phases.  With the increased use of anti-lock braking systems 

(ABS), tyre marks are becoming less common.  The presence of water on a road 

surface also decreases the chance of suitable tyre marks being found on the road 

surface.  In situations where there are no tyre marks, any model based on the analysis 

of those marks cannot succeed and the determination of pre-impact speeds in 

particular becomes more problematic.  There are a variety of methods that provide 

information on vehicle speeds in the absence of tyre marks.  One such method 

involves the use of the pedestrian throw distance discussed, for example, by Evans 

and Smith [106]   

Where there are no tyre marks, an analysis of the impact phase of the collision 

becomes more relevant to forensic investigators and is often the only source of 

information concerning the behaviour of the vehicles.  This research considers the 

modelling of the impact phase of a collision.  It examines the existing impact phase 

models and considers their various strengths, weaknesses and accuracy.  It also seeks 

to develop a new model to generate more relevant results and to quantify the accuracy 

of these innovations.  

Crash phase models tend to fall into two broad categories, those based solely on the 

conservation of linear and/or angular momentum and the CRASH model which also 

considers the conservation of energy.  Three main crash models are used to describe 

the crash phase of a collision.  Two are momentum based models as defined by 

Ishikawa [42] and Brach [9].  The third model is the CRASH algorithm developed during 

the 1970‟s and described by McHenry [65].  

Although several other models also exist, such as those by Woolley [130] and that 

used in PC-CRASH [111], these are similar in many respects to the momentum based 

models considered in detail by this research.   An overview of the basic assumptions 

made by the three main crash phase models is provided in the next section together 

with a summary of the salient features for each of the models.   
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2.3 Description of the existing models 

2.3.1 Common theory and assumptions 

In this research planar collisions only are considered.  In a planar collision each vehicle 

has three degrees of freedom, two parameters describing the motion of the centre of 

mass and a third parameter describing the rotation of the vehicle.  The three crash 

phase models examined in this research make a number of common assumptions, 

1. Tyre and other external forces are assumed to be negligible during the impact, 

so that momentum is conserved. 

2. The vehicle masses and moments of inertia are maintained throughout the 

collision.  That is the deformations caused by the collision do not significantly 

change the moments of inertia and the masses of the vehicles are not 

significantly changed, for example, by parts of a vehicle becoming detached as 

a result of the collision. 

3. The time dependent impulse can be modelled as one force, its resultant (P) 

which acts at some point in or on the vehicle. 

The conservation of linear momentum is based on the linear form of Newton‟s Second 

and Third laws and leads to the equations 

1 1 1 1 1( )m m   v u v P
,
       (2.1) 

2 2 2 2 2( )m m    v u v P        (2.2) 

where m is the mass of each vehicle, P is the impulse and u and v are the initial and 

final velocities and Δv is defined as the change in velocity v - u.  Subscripts 1 and 2 

refer throughout to vehicles 1 and 2 respectively.  In collinear collisions, the line of 

action of the impulse P passes through the centres of mass of the vehicles and there is 

no change in the rotational velocity of either vehicle.  If P does not act through the 

centres of mass it produces a change not only in the motion of the centres of mass, but 

also a rotation of each vehicle about the centre of mass given by 

2 2

1 1 1 1 1 1 1 1( )m k m k h P     
,
      (2.3) 

2 2

2 2 2 2 2 2 2 2( )m k m k h P             (2.4) 



2.  Crash Phase Models  Jon Neades 

9 

where k is the radius of gyration, h the moment arm of the impulse about the centre of 

mass, ω and Ω are the pre and post-impact rotational velocities of each vehicle and Δω 

represents the change in rotational velocity Ω – ω.  In a vehicle to vehicle collision it is 

not unreasonable to assume that the masses, radii of gyration and moment arms for 

each vehicle are known or can be obtained easily.  Equations (2.1) - (2.4) then form a 

system of four equations with eight unknown velocity variables.  Provided that four 

velocity variables can be established then complete solutions for the remaining four 

variables can be determined.  The momentum based models utilise equations (2.1) - 

(2.4) and attempt to provide methods to establish solutions for the unknown velocities.  

Particular solutions using momentum alone are exemplified by the models proposed by 

Brach [9] and Ishikawa [42] and these are examined in more detail. 

Figure 2.1 shows the vehicle based reference frame and notation used by this 

research.   The position of the point of application relative to the centre of mass of a 

vehicle can be described using the distance d and angle .  The parameter h is the 

length of the moment arm of the impulse about the centre of mass.   In this research 

the length of the moment arm tangential to the impulse ht is also relevant and is utilised 

in Chapter 7. 

 

Figure 2.1: Vehicle based reference frame 
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The First Law of Thermodynamics leads to the conclusion that in a closed system, the 

total energy is also conserved.  The assumption that an impact between two vehicles 

may be modelled as a closed system allows the development of an equation describing 

the energy transfer as a result of that collision, 

 2 2 2 2 2 2 2 2 2 2 2 2

1 1 2 2 1 1 1 2 2 2 1 1 2 2 1 1 1 2 2 2 2mu m u m k m k m v m v m k m k E            (2.5) 

where E denotes the work done in deforming the vehicles.     

Equation (2.5) provides another equation and another relevant unknown variable, the 

total work performed.  This forms a system of five equations with nine unknowns.  In 

general, if five values can be estimated by some method, then a complete solution can 

be obtained for the remaining variables.  This forms the basis for the CRASH model 

which is also examined in more detail. 

 

2.3.2 Brach’s Model 

Brach has published several descriptions of his Planar Impact Mechanics (PIM) model 

since 1983 and his model is described extensively in the literature and compared with 

existing crash test data.  A comprehensive explanation of his PIM model is contained in 

[7], [8] and [11].  Figure 2.2 shows a diagram illustrating the coordinate systems used 

in the PIM model. 

Figure 2.2: Coordinate Systems used in Planar Impact Mechanics 
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In essence Brach‟s PIM model considers the conservation of linear and angular 

momentum in a orthonormal coordinate system oriented to an impact plane which is 

established parallel to a hypothetical contact surface common to both vehicles.  The 

impact plane is related to the x-y coordinate system by the angle Γ.    

The impulse due to impact is resolved into two components, normal and tangential to 

the impact plane.  The resulting six equations and eight unknowns are supplemented 

with two coefficients to provide additional constraints and thereby generate a solution.  

Brach defines a coefficient of restitution normal to the impact plane (en) which is 

defined as the ratio of the relative normal velocity post impact to the relative normal 

velocity pre impact.  Brach also introduces another coefficient, the impulse ratio µ.  This 

is effectively a coefficient of friction and is defined as the ratio of the normal and 

tangential impulse components.  Brach‟s solution to equations (2.1) - (2.4) is a series of 

equations which are shown in Appendix A and summarised below 

1 1 1

1 1 1

2 2 2

2 2 2

2

1 1 1 1 1 1

2

2 2 2 2 2 2

(1 ) / ,

(1 ) / ,

(1 ) / ,

(1 ) / ,

(1 ) ( ) / ( ),

(1 ) ( ) / ( )

n n n Rn

t t n Rn

n n n Rn

t t n Rn

n Rn t

n Rn t

v u m e U q m

v u m e U q m

v u m e U q m

v u m e U q m

m e U h h q m k

m e U h h q m k





 

 

  

  

  

  

    

    

     (2.6) 

where  

1 2 1 2

2 2 2 1 1 1

2 2

1 1 2 21 2

2 2 2 2

1 1 2 2 1 1 2 2

/ ( ),

( / ),

/ ,

,

1
1 .

n Rn Rn

t n

Rn n n

t t

m m m m m

e V U

P P

U u h u h

mh h mh hmh mh

q m k m k m k m k



 



 

 



   

 
     

 

 (2.7) 

The subscripts n and t represent component variables normal and tangential to the 

impact plane.  From equation (2.6) it is relatively straightforward to determine the total 

change in velocity (Δv) of each vehicle.  This is discussed further in section 2.5.3 
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Brach [11] shows that an important quantity in the PIM model is the value µ0 which is 

the impulse ratio µ that provides a common post-impact velocity tangential to the 

impact plane, i.e. where 

1 2t tV V . (2.8) 

For vehicle to vehicle collisions the point of application of the impulse on each of the 

vehicles frequently reach a common velocity.  In the PIM model this condition is 

satisfied when 

 0e
n
 , (2.9) 

0   (2.10) 

The parameter µ0 is described by Brach as the critical impulse ratio 

0

(1 )

(1 )(1 )

n

n

rA B e

e C rB


 


  
 (2.11) 

where 

2 2

1 2

2 2

1 1 2 2

1 1 2 2

2 2

1 1 2 2

2 2

1 2

2 2

1 1 2 2

/ ,

1 ,

,

.

Rt Rn

t t

t t

r U U

mh mh
A

m k m k

mh h mh h
B

m k m k

mh mh
C

m k m k



  

 

 

 (2.12) 

This terminology allows the value of the parameter q in the PIM model to be expressed 

using 

1
A B

q
   (2.13) 

Brach‟s model takes as input the initial velocities and provides the final velocities as 

solutions.  In collision reconstruction, the desired output is normally the initial velocities 

and this limits the utility of PIM.  Using an iterative process the initial velocities can be 
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adjusted until the desired output is obtained and Brach [11] provides several hints as to 

how that process may be performed. 

As a side effect to this model, Brach outlines how the principal direction of force 

(PDOF) can be determined from the ratio of the normal and tangential impulses.  He 

also outlines a method for determining the total energy loss.  In their later work Brach 

et al. [13]  extend this technique and partition the total energy loss into normal and 

tangential components.  This aspect is discussed in more detail in Chapter 4. 

 

2.3.3 Ishikawa’s Model 

Ishikawa‟s model [42] is similar in many respects to planar impact mechanics proposed 

by Brach.  Ishikawa also defines an impact plane to resolve the impulse into normal 

and tangential components.  Where Ishikawa‟s model differs from Brach is that he 

proposes the utilisation of two coefficients of restitution, one normal to the impact plane 

(en) and the other tangential to the impact plane (et).  These are defined such that the 

relative velocities of the point of application before (U) and after (V) impact are given by 

,       Rn n Rn Rt t RtV e U V eU     (2.14) 

where 

2 2 2 1 1 1 2 2 2 1 1 1

2 2 2 1 1 1 2 2 2 1 1 1

,       

,      

Rn n n Rn n n

Rt t t t t Rt t t t t

U u h u h V v h v h

U u h u h V v h v h

 

 

         

         
 (2.15) 

Ishikawa does not attempt to solve the equations directly for either the pre or post 

impact velocities, but instead provides a solution for the impulse components,  Pn and 

Pt using the relative closing speeds and relative separation speeds at impact.  

Ishikawa‟s solution makes extensive use of a factor gamma ( ) which is defined as 

2

2 2

k

k h
 


          (2.16) 

where k is the radius of gyration and h the length of the moment arm.  This factor  

implicitly takes account of the rotational effects caused by the application of an impulse 

at a distance h from the centre of mass of a vehicle.     
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Ishikawa‟s solutions are shown in Appendix B and summarised below 
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where 

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2
0 2 2

1 1 2 2

,

,

,

n n
n

n n

t t
t

t t

t t

m m
m

m m

m m
m

m m

h h h h
m

m k m k

 

 

 

 







 

        

(2.18) 

and  

2 2

1 2
1 22 2 2 2

1 1 2 2

2 2

1 2
1 22 2 2 2

1 1 2 2

,       ,

,       .

n n

t t

t t

k k

k h k h

k k

k h k h

 

 

 
 

 
 

 (2.19) 

From the impulse components, Pn and Pt it is straightforward to use equation (2.1) to 

determine the change in velocity sustained by each vehicle.  If either the post-impact or 

pre-impact velocities are known, then it is then possible to determine the remaining 

linear velocities.   

Ishikawa does not provide explicit solutions to determine the change in rotation of each 

vehicle.  However the change in rotation can be derived from equations (2.1) - (2.4) as 

it can be shown that 

 1
1 12

1

h
v

k
   ,   2

2 22

2

h
v

k
   .      (2.20) 

Ishikawa uses the ratio of the two impulse components obtained when there is a 

common post-impact velocity, i.e. en = et = 0 to establish a method for indexing 

collisions.  This particular aspect is not relevant to this research and is not discussed 
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further.  Ishikawa also discusses the relationship between the energy loss as a result of 

the collision and the two coefficients of restitution.  He shows that the two coefficients 

of restitution en and et are related to the impulse ratio µ by the equation 

0

0

(1 )( )
1

(1 )

n Rn n t
t

t Rt n

m U e m m
e

mU m m





 
 


.

      (2.21) 

Provided the same orientation of the impact plane is used in both Ishikawa‟s and 

Brach‟s models and that provided there is a common value for en, equation (2.21)

provides a useful way of converting Brach‟s impulse ratio µ into Ishikawa‟s tangential 

coefficient of restitution et.  In the reverse scenario, the normal and tangential 

components determined from Ishikawa‟s model can be used to define Brach‟s impulse 

ratio. 

 

2.3.4 The CRASH  Model 

From earlier work by Mason and Whitcomb [63], Campbell [16] derived a method to 

estimate the energy involved in causing vehicle crush.  With the assumption that the 

work done in causing crush was the only factor causing  a loss of kinetic energy in the 

system, an estimate could then be made of the Equivalent Barrier Speed (EBS).  This 

concept was extended by McHenry [65] on behalf of the Cornell Aeronautical 

Laboratory (later Calspan Corporation) during the late 1970s and eventually developed 

into the CRASH algorithm.  The name itself is an acronym for Calspan Reconstruction 

of Accident Speeds on the Highway.  Various variations of the algorithms were 

developed, CRASH in February 1976 through to CRASH3 in February 1981.  All 

variants share the same underlying principles and for the purposes of this research can 

be considered equivalent.  CRASH was initially designed to run on a mainframe 

computer however these algorithms were adopted by a variety of manufacturers for 

use on personal computers.  In the UK the most common derivatives in use are 

probably AiDamage [74], EDCRASH [26], and WinCrash [124] 

Although originally intended as a tool for assessing accident severity, CRASH has 

been widely adopted by the crash investigation community.  This is probably because 

where there is insufficient information as to the desired output velocities, methods 

based on the conservation of momentum alone cannot succeed e.g. Brach‟s PIM.  

Information about the collision severity and changes in velocity can still be obtained 
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from an analysis of the damage sustained by each of the vehicles and this is the basis 

for CRASH.   

CRASH comprises a  series of modules to estimate the change in velocity (v)  of a 

vehicle from the damage sustained by each vehicle (E1 and E2).  Post-impact trajectory 

simulation modules are also included to establish post impact speeds.  The damage 

only part of CRASH utilises the conservation laws of momentum and energy to 

establish the change in velocity of vehicles involved in a collision.  The assumption is 

made that the points of application of the impulse reach a common velocity during the 

approach phase of the collision.  This is known as the common velocity condition.  With 

this assumption, Tsongas [117]  shows that the CRASH equation can be expressed as 

1 2 2 1 2 1 1 2
1

1 1 1 2 2 1 1
1

2 2

2 ( ) 2 ( )

( )
1

m E E E E
v

m m m m
m

m

  

  



 
  

  
 

 

 .    (2.22) 

Equations (2.1) and (2.2) lead to an expression relating the two changes in velocity 

from which the change in velocity of vehicle 2 can be derived 

2

1

1 2

m

m
  v v         (2.23) 

The change in velocity calculated by this method is the change in velocity of the centre 

of mass of each vehicle along the line of action of the impulse.  From Newton‟s Second 

Law it follows that there can be no change in velocity at the centre of mass tangential 

to the impulse so CRASH implicitly defines the total change in velocity.   

The incorporation of a coefficient of restitution allows the changes in velocity to change 

beyond that required simply to reach a common velocity.  As Brach [11] indicates this 

requires that a common velocity is achieved both parallel to and tangentially to the 

impulse.  Smith [105] shows that some relaxation to the common velocity condition can 

be achieved by incorporating a coefficient of restitution parallel to the impulse ep.  His 

derivation provides an expression for the change in velocity  

1 2 2 1 2 2 1 2

1

1 1 1 2 2 1 1 2 2 1

2 ( )(1 ) 2 ( )(1 )

( )(1 ) ( )(1 )

p p

p p

m E E e m E E e
v

m m m e m m m e

 

   

   
  

   
  (2.24) 
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where δ = 1/γ.  Smith‟s derivation is utilised in Chapter 7 where it is shown that it is 

possible to relax the common velocity condition still further to model collisions where a 

common velocity is not achieved either along the line of action or tangentially to the 

impulse.   

A variety of methods can be utilised to determine the crush energy, the damage 

analysis part of the CRASH algorithm can therefore be viewed as two separate 

techniques although they are commonly quoted as one technique.  The first technique 

is to establish an estimate of the work done in causing deformation and the second is 

to calculate the change in speed.  

The second part of the CRASH algorithm takes as input the work done in causing 

deformation to each vehicle and outputs the change in speed for each vehicle.  Rose et 

al [95] describe the CRASH algorithm as a quasi-one-dimensional model.  They argue 

that although rotational changes is implicitly incorporated into the model (through their 

description of  as an ‘effective mass‟ factor) any change in velocity is implicitly 

assumed to take place along the line of action of the impulse.  In practice this means 

that the user needs to define the line of action of the impulse or principal direction of 

force (PDOF). 

The requirement to estimate a PDOF is a regarded as a major weakness by several 

commentators (e.g. Brach [11], Woolley [132]) since it is difficult to estimate this 

quantity reliably or consistently.  Smith and Noga [108] for example suggest that the 

PDOF for each vehicle may be subject to a range of ±20° for different investigators. 

CRASH has received a considerable amount of criticism since its release mainly 

concerning some possible inadequacies and overall accuracy of the model e.g. 

Woolley [132].  It is worth noting that the introduction to the CRASH3 User‟s Manual 

states [117] 

CRASH3 is not, nor was it intended, to be a high fidelity collision 

simulation program.  In most accidents, only a minimum amount of data 

are available, and even these data are only available second hand.  

CRASH3 is intended primarily as a tool for making a standardized 

assessment of an accident’s severity. 

Despite these comments CRASH remains a popular algorithm within the forensic 

investigation community.  The potential accuracy of CRASH is discussed in detail in 
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Chapter 5 and Chapter 6.  In the next section the CRASH technique to determine the 

work done in causing crush is discussed.  

 

2.4 Determining the work done in causing crush 

In order to generate a solution some method must be applied to determine the work 

done in causing deformation to the vehicles and thereby the values of E1 and E2. The 

derivation by Smith [105] shows that a solution is not dependent upon any particular 

energy loss model to determine the crush energy so that any suitable model may be 

used.  It was found in early studies of frontal rigid barrier tests e.g. Campbell [16] that 

for impact speeds above about 20 mph (9 ms-1) a near linear relationship between the 

impact speed and crush depth was obtained as shown in Figure 2.3 

 

Figure 2.3: Campbell’s Results 

 

Campbell described the linear relationship as 
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Campbell showed that this is equivalent to a linear force / crush model to describe the 

force per unit width and has the form shown in Figure 2.4 

Figure 2.4: Force per Unit Width 

 

 

 

 

 

 

The equation of the graph in Figure 2.4 is 

F A BC  . (2.27) 

Campbell made the assumption that in a barrier impact, all the kinetic energy of the 

vehicle at impact is converted into residual crush, i.e. 

2

0 1

1
( )

2
E m b bC  . (2.28) 

The work done in deforming the vehicle can be determined by integrating equation 

(2.27) with respect to the distance crushed (C) and the damage width (L) i.e. 

0 0
( )  .

L C

E A BC dC dL          (2.29) 

If it is assumed that the crush is uniform over the entire damage width (as is likely with 

frontal barrier impacts), equation (2.28) can be substituted into equation (2.29) and 

solved to produce expressions for A and B and a constant of integration G in terms of 

b0 and b1 i.e. 

2
2

0 1 1,       ,      .
2

m m A
A b b B b G

L L B
    (2.30) 

The constant of integration G corresponds to an expression for the work done on the 

vehicle which is performed with no residual crush.  Campbell‟s methods were 
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developed by McHenry [65] who derived a similar model using Emori‟s [27] earlier 

assumption that the crush to vehicles can be modelled as a linear spring.  McHenry 

devised a practical method which divided the crush area into a number of discrete 

crush zones defined by a series of crush measurements as shown in Figure 2.5 

 

Figure 2.5: Crush zone measurements 

 

 

 

 

 

 

Each crush zone is thereby defined by two crush measurements and the width of the 

zone l.  The work done in causing crush to each zone can then be described by the 

equation 
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         (2.31) 

where  ̅ is the displacement of the centre of mass of the zone perpendicular to the 

original surface and area is the area of the each crush zone, i.e. 
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 (2.32) 

1 2( ) / 2.area l C C   (2.33) 

Typically 2, 4 or 6 crush measurements are used to define a complete damage profile 

and McHenry provided explicit solutions to cater for each of these numbers of 

measurements.  McHenry also used the geometric properties of crushed area to define 

the point of application of the impulse.  The CRASH model he describes uses the 

geometric centre of the damaged area, the damage centroid, as the point of application 

l l l 

C1 
C2 C0 

C3 
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of the impulse.  Again, McHenry provides explicit solutions for 2, 4 or 6 crush 

measurements to define the position of the damage centroid.  Neades [74] extended 

McHenry‟s work in the implementation of AiDamage to allow an unlimited number of 

crush zones to be defined.  Singh [100] also shows that with a arbitrary number of 

equally spaced crush measurements, C1 to Cn and by assuming a constant stiffness for 

all crush zones, the total force F and work done in causing crush E can be determined 

by 

1
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If it is assumed that the initial kinetic energy of a vehicle is converted into crush, as is 

the case for a car to barrier collision, then the initial speed of the vehicle is known as 

the equivalent barrier speed (EBS) or barrier equivalent velocity (BEV).  With this 

assumption, equation (2.35) can be equated to the initial kinetic energy of the vehicle.  

Substitution of equation (2.30) then produces 

 2 2 2

0 1 1 1( 1) ( 1)n EBS b b b b n      . (2.37) 

Singh [100] shows that for non-uniform crush profiles the quadratic b1 in equation 

(2.37) can be determined as 
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  (2.38) 

Similar derivations can be made to determine stiffness coefficients from angled 

collisions and collisions with moveable barriers.   Singh [99] extended this model to 

determine analytically the value of b0 which is helpful in providing an estimate of this 
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parameter.  His derivation however requires knowledge of the time over which a 

common velocity was achieved during the impact.  This effectively means that it can 

only be used for test collisions where a suitable acceleration-time history of the test 

impact exists.  It also makes the additional assumption that the peak force reached 

during the impact is equal to twice the average force. 

Prasad [90], [88], [89] noticed that in an extensive series of crash tests the vehicles 

tested were found to be linear in √    .against residual crush.  He reasoned that since 

the change in velocity equation (equation (2.22)) required energy as an input, then it 

made more sense to determine stiffness coefficients which provided energy directly.  

As a result he reformulated the crush damage equation to give 

0 1

2E
d d C

L
   (2.39) 

where the coefficients d0 and d1 in equation (2.39) are related to the A and B 

coefficients as follows 

0 1,       .
A

d d B
B

   (2.40) 

Prasad showed that the linear impact speed / crush relationship described by Campbell 

continued to hold for more modern vehicles (up to 1990).  A and B coefficients for real 

vehicles can be calculated from the results of existing crash tests using the methods 

described by Prasad, Neptune [80], or Jean [46].   

A comprehensive summary of the stiffness coefficients obtained for a variety of vehicle 

categories is given by Siddall and Day [98].  Their work forms the basis for the 

coefficients used in a number of commercially available CRASH based programs e.g. 

AiDamage [74].  Hague [39] updated the frontal coefficients again in 2005 and showed 

that there was a general trend relating vehicle stiffness and model year.  He found that 

more modern vehicles tended to be stiffer and therefore have higher coefficients than 

older models.   

Techniques for measuring vehicles to obtain the input values required to determine the 

work done in causing crush are described by Neades and Shephard [75] and are 

discussed in Chapter 3.  Kerkhoff et al. [54] noted that at high impact speeds vehicle 
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the linear response of crush and impact speed at lower speeds may not be valid at 

higher speeds as shown in Figure 2.6 

Figure 2.6: Speed / Crush Graph for US Ford Escorts 

 

In effect there is a softening of the vehicle at higher impact speeds.  Hague [39] 

suggests that this may be due to the energy absorbing structures at the front of the 

vehicle becoming saturated and the occupant compartment beginning to collapse.  

From a series of similar tests, Varat et al. [121] noted that a quadratic model provided a 

good fit to the data.  They proposed a bi-linear approximation to determine the 

relationship between impact speed and crush with a change in slope at an impact 

speed of 30 mph.  Additional techniques are also proposed for example Wood [126] 

where a power law is described to show the relationship between energy absorbed and 

residual crush.  Other methods also exist for estimating the work done in causing 

deformation.  One such technique involves a visual comparison of the damage 

sustained with vehicles crashed at known speeds.   

All these models are essentially based on the response of the vehicle to head-on crash 

tests at various speeds.  This is not the case in the majority of real-world collisions.  An 

enhancement proposed by McHenry in the CRASH User‟s Manual [117] is to correct 

the work done as calculated by the standard CRASH analysis technique by a factor to 

allow for impulses which do not act perpendicularly to the measured surface.  This 

energy adjustment factor is defined in the CRASH User‟s Manual as, 

2(1 tan )cE E           (2.41) 

0

10

20

30

40

50

60

0 10 20 30 40 50

Im
p

ac
t 

Sp
e

e
d

 (
m

p
h

) 

Residual Crush (inches) 



2.  Crash Phase Models  Jon Neades 

24 

where Ec is the calculated work, E is the corrected work performed and α is the angle 

formed between the direction of the impulse and the undamaged surface of the vehicle.  

Brach [11] criticises the calculation of crush energy calculations and in particular the 

energy adjustment factor described above.  He asserts that there is no physical basis 

for this adjustment and instead proposes a method whereby the work done can be 

partitioned in normal and tangential components [13].  A more detailed description of 

how the work performed is calculated by CRASH is provided in Chapter 4 together with 

a discussion of the validity of the energy adjustment factor in equation (2.41). 

 

2.5 Relationships between the models – similarities and differences 

Since all the models are planar models, then any impact which has a substantial 

vertical force component cannot be modelled. These include rollovers and falls.  The 

momentum based models such as those exemplified here by Brach and Ishikawa have 

the advantage of being able to potentially model a wide variety of impacts and can be 

considered to be more general in their application than CRASH. CRASH, at least in its 

traditional form, cannot be used unless a common velocity is achieved at the point of 

contact between the vehicles during the approach phase.  This effectively excludes 

sideswipe impacts from being modelled in CRASH.  

The requirement to estimate the total amount of energy lost as a result of the collision 

also means that CRASH will calculate an underestimate whenever a significant amount 

of energy cannot be estimated.  For example, CRASH will underestimate the velocity 

change for impacts with pedestrians, animals and other objects which do absorb some 

energy.  It is possible to model a collision with a motorcycle or truck as a collision with 

a barrier [74].  Barriers are defined in CRASH as objects which do not themselves 

absorb energy.  Unless some alternative method is available to estimate the energy 

lost in causing crush, then CRASH will underestimate the change in velocity.  Collisions 

between vehicles where there is significant override or underride of the main structural 

members tend too to render the estimation of the crush energy unreliable [65].  

All the models make the assumption that the resultant impulse (the impact centre) acts 

at a single fixed point.  Ishikawa [42] demonstrates that this point is not fixed during an 

impact, but moves to a certain extent.  The location of the impact centre is defined by 

McHenry [65] in CRASH as the geometric centre of the damage profile.  Inevitably this 

definition positions the point of application away from the physical line forming the 
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damage profile.  Both Brach and Ishikawa suggest that the location of the point of 

application should be chosen so as to lie on the damage profile.  Ishikawa [42] 

proposes a method to determine the position of this point.  However this method 

requires prior knowledge of the impulse components and angular velocity which are to 

some extent determined by the choice of impact centre.  As such, the utility of this 

method in practical forensic investigation is questionable.  In any event the choice of 

the location of the impact centre is one that requires estimation by the user and is thus 

subject to error 

 

2.5.1 Equivalence of Brach’s and Ishikawa’s models 

The similarity between the two momentum based models has already been mentioned 

and provided the same impact plane is used for the PIM and Ishikawa‟s models, 

identical results can be obtained.  The equivalence of the two models can also be 

shown.  Ishikawa [43] defines impulse components as outlined in equations (2.17).  

From these equations Ishikawa shows that the ratio of the impulse components (µ) is 
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. (2.42) 

This can be solved for the normal coefficient of restitution en in terms of the tangential 

coefficient et and the ratio of the impulse components µ to give equation (2.21). 

Equation (2.42) can also be solved to give an expression relating the two coefficients of 

restitution i.e. 
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There are obvious similarities between the coefficients A, B and C used in Brach‟s 

model [equations (2.12)] and the coefficients mn, mt and m0 [equations (2.18)] in 

Ishikawa‟s model.  Further analysis shows that the coefficients are related by the 

expressions   
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Appendix C shows these relationships and derived products which facilitate conversion 

between Brach‟s model and that of Ishikawa.  Substitution of equations (2.44) into 

equation (2.43) and solving for µ produces 

(1 ) (1 )

(1 )(1 ) (1 )

t n
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e rA B e

e C rB e


  


   
. (2.45) 

Brach defines the critical impulse ratio µ0 as the impulse ratio µ which gives a common 

post-impact velocity tangential to the impact plane, i.e. et = 0. When et is zero then 

equation (2.45) simplifies to become identical to Brach‟s critical impulse ratio shown in 

equation (2.11). 

 

2.5.2 Coefficients of restitution 

In both momentum models two coefficients are required to generate solutions.  In the 

PIM model these are a coefficient of restitution normal to the impact plane en and µ 

which is the ratio of the normal and tangential impulse components.  Ishikawa‟s model 

utilises two coefficients of restitution, en which is defined in the same way as Brach‟s 

coefficient of restitution and et which is a tangential coefficient of restitution.  

Conversion between the two models can be achieved through equations (2.21) and 

(2.44).  As shown by Smith [105] CRASH can also utilise a coefficient of restitution ep 

acting along the line of action of the impulse.   

Brach [13] states that in the majority of collisions involving light vehicles, relative 

tangential motion at the impact centre ceases prior to separation of the vehicles.  In his 

PIM model a common tangential post-impact velocity is achieved when µ = µ0  Similarly 

in Ishikawa‟s model this will be achieved when et = 0.  In the standard form of CRASH, 

a common tangential velocity is assumed.  Considerable research has been directed 

towards establishing estimates for a coefficient of restitution along the line of action of 

the impulse, or normally to an impact plane.  Smith and Tsongas [110] reported a 

series of staged collisions where they found that the coefficient of restitution was 

between 0 and 0.26.  They concluded that in general lower values of restitution tend to 

be found as the closing speed increases.  Little information is available to indicate their 

methodology but it seems likely that these collisions were central and that restitution 

was calculated along the line of action of the impulse.  Wood [125] also suggests a 

similar relationship based on a series of full scale crash tests with a maximum 
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restitution of about 0.3  Rose, Fenton and Beauchamp [94] investigated the effects of 

restitution for a single type of vehicle (a Chevrolet Astro van) in head-on collisions with 

a barrier. They found that the coefficient of restitution varied from 0.11 to 0.19 for 

impact speeds around 47 – 57 kmh-1.  Cipriani et al. [21] studied a series of vehicle to 

vehicle collinear impacts with low speeds up to 7 ms-1 and discovered that restitution 

varied from about 0.2 to 0.6 with the lower values found for higher impact speeds.  

Brach [13] suggests that restitution ranges from 0 to 0.3 for light vehicle collisions with 

the majority of values at the lower end of that range.  At lower closing speeds it is 

apparent that restitution effects can be significant. 

Both the PIM and Ishikawa models are forward iterative models.  In use they require 

the pre-impact velocities to be defined from which it is then possible to determine the 

post-impact velocities.  The input data is adjusted until the output data matches some 

desired post-impact scenario.  For forensic collision investigation, in practice this 

means that without knowledge of the post-impact velocities, such as those obtained 

using traditional methods, it is difficult to obtain reliable solutions and this is a 

disadvantage.  Brach [11] does attempt to address this issue by using a technique he 

describes as LESCOR (Least Squares Collision Reconstruction).  In this technique a 

spreadsheet is used to iterate through suitable ranges of input data to determine the 

best fit to some known quantity.  Examples he uses include matching the post-impact 

speeds to known speeds and matching the energy loss calculated by PIM to that 

determined from CRASH measurements.  

As previously mentioned, CRASH requires an estimate of the PDOF.  This is required 

to determine the line of action of the impulse and also to determine the magnitude of 

the energy adjustment factor described by McHenry [65].  It is recognised that this 

parameter is difficult to estimate and this has been used to indicate the unreliability of 

CRASH [108], [132], [3].  However it should be noted that the models of Brach and 

Ishikawa also require an estimate to determine the orientation of the impact plane.  

Ishikawa [42] suggests that the impact plane is formed by the common surface forming 

the damage profile of each vehicle.  Brach [13] identified that where there was a 

common post-impact velocity (en = 0 and µ = µ0) the choice of impact plane is 

immaterial as identical results are obtained for all orientations of the impact plane.  In 

other types of collision, the choice of the impact plane affects the specific values of en 

and µ required to obtain a particular solution (en and et in Ishikawa‟s model).  Brach 

also provides guidelines for choosing the orientation of the impact plane.  His 
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suggestion is to nominally define the impact plane to the mean angle between the 

attitude of the vehicles at impact and use a range of values to examine the uncertainty 

associated by this choice. 

 

2.5.3 Equivalence of CRASH and momentum models 

Through the explicit incorporation of the conservation of total energy in the system as 

described by Smith [105], the CRASH solution as shown in equation (2.24) takes as 

input the masses of the vehicles, the lengths of the moment arms and the work done in 

causing crush.  This part of the CRASH algorithm is entirely separate from any model 

describing how the crush energy value may be obtained.  The conservation laws are 

common to all three models, thus it should be possible to use common data in each 

model and obtain identical results.  For example it should be possible to use the total  

kinetic energy lost derived from Brach or Ishikawa‟s models and use this as input to 

CRASH.  Although the energy calculated from Brach or Ishikawa‟s models can be used 

directly, to obtain identical results in each of the models a common impact plane is 

required. If not then coefficients of restitution are not common between the models.  

This requirement is relaxed somewhat in Chapter 4 where a technique is described to 

transform coefficients of restitution between differing impact planes.  An explanation as 

to how impact planes can be aligned follows.  

Brach [9] and [10] shows how the momentum change in each vehicle can be written 

using his model as 
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where 

/ (1 )c tr e   . (2.47) 

(Note that in Brach [10] equation (2.46) appears to have been misprinted so that the 

(1+ µ2) term appears incorrectly as (1+µ) and the numerator in the final term reads 

incorrectly as µ2r instead of µr2.)  When µ is zero then by definition Brach‟s (or 

Ishikawa‟s) tangential impulse component must also be zero.  When the tangential 
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impulse component is zero, this corresponds to an impact plane perpendicular to the 

total impulse P.  Where µ is zero, equation (2.46) reduces to 
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and since µ is zero, q in equation (2.48) can also be simplified and can be found from 
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Equation (2.49) can be expanded and solved for q to give 
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Equation (2.48) can therefore be expressed as 
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The CRASH solution as shown in equation (2.24) can also be written in a similar 

manner to equation (2.48) to show the change in momentum of each vehicle 
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From the definition of γ in equation (2.16), equation (2.52) can be expanded to produce 
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 (2.53) 

Equation (2.53) is therefore shown to be equivalent to equation (2.51) with ep = en and 

EL = E1 + E2.  This demonstrates that the part of the CRASH algorithm to determine 

velocity change from the energy loss (equation (2.24)) can be regarded as a special 

case of the more general Brach or Ishikawa models. Specifically the special case of 

CRASH will be achieved when the impact plane in Brach‟s or Ishikawa‟s models is 

orientated so as to be perpendicular to the total impulse P.  It can also be seen that 
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CRASH therefore implicitly defines an impact plane; one which is perpendicular to the 

total impulse. 

A further condition implicit in the discussion above, is that a common tangential velocity 

is achieved at the point of application of the impulse.  In Ishikawa‟s model this will be 

achieved when et = 0.  In Brach‟s PIM model a common tangential velocity is achieved 

when µ = µ0.  Since µ is zero, this implies that the numerator in the equation to 

determine µ0 in Brach‟s PIM model (equation (2.11)) must also be zero, so that  

0 (1 )nrA B e    (2.54) 

The implications of this relationship are discussed further in Chapter 7. 

 

2.6 Crash test data 

The National Highway Traffic Safety Administration (NHTSA) was established in 1970 

as an agency of the US Department of Transportation (DOT).  Their mandate is to 

carry out safety programs concerning road vehicles. As part of their road safety 

program they maintain and publish a comprehensive database of a series of crash 

tests [83]. The database contains details of over 6800 crash tests dating back to 1978.  

A variety of tests are recorded such as those for  the New Car Assessment Program 

(NCAP), barrier tests and car to car impacts.  This crash test database is the main 

source of data for determining stiffness coefficients for use in CRASH analyses.  

Similar data is not published from the Euro NCAP tests and without detailed crush 

measurements this series of tests is not suitable for determining stiffness coefficients or 

for validation purposes. 

A series of 12 vehicle to vehicle crash tests were performed  during the late 1970s to 

provide validation data for the Simulation Model for Automobile Collisions (SMAC) and 

CRASH.  The results were published by Jones and Baum in 1978 [51] and the test 

series has since become known by an acronym derived from the title of their paper, 

Research Input for Computer Simulation of Automobile Collisions (RICSAC). Several 

authors have analysed the RICSAC tests in detail and a number of discrepancies 

between those analyses are apparent e.g. Smith and Noga [109] and Brach [6].  It is 

also apparent that in several of the tests there are significant discrepancies between 

the recorded damage profiles and the photographs of the damage.  Nevertheless, the 

series of tests are useful for validation purposes. 
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Several other vehicle to vehicle crash test series also exist such as those performed by 

ITAI for their crash test days at Leyland [29] and Lotus [45].  These tend to be more ad-

hoc but again provide useful validation data.  Woolley and Kinney [131] provided data 

for 45 reference cases involving two vehicle collisions.  This data set was generated 

using the SMAC model rather than from actual crash testing so its utility for validation is 

questionable.  

 

2.7 Accuracy 

A key aspect to forensic collision investigation is an ability to quantify the likely errors 

and sources of errors in any particular case.  Most of the research relating to the 

accuracy of the various impact models tends to be empirical in nature comparing the 

correlation between a particular model and crash tests.  For example, Brach and Brach 

[10] provide an analysis of how his PIM and CRASH models compare with the RICSAC 

test data.  Lenard et al. [56], [57] consider the accuracy of CRASH compared with a 

series of collisions.  There is little information available however concerning the 

theoretical accuracy of each of the models with variation in the input parameters.   

Bartlett et al. [3] discuss the uncertainly in collision investigation measurements in a 

general way.  This discussion is continued by Fonda [32] who considers in more detail 

the uncertainty in the collision phase.  An early (1982) paper by Smith and Noga [108] 

provided an analysis of the confidence limits applicable to measurements for CRASH.  

They concluded that for low DeltaV collisions (10-15 mph) the mean sensitivity was 

±17.8%  For high DeltaV collisions (25-30 mph) the mean sensitivity was ±13.7%.   

More recently (2004) Singh [100] performed a detailed statistical analysis to determine 

the confidence limits applicable to the stiffness coefficients A, B and G as used in 

equation (2.30).  This work is extended in Chapter 5 where the theoretical confidence 

applicable to impact phase models is considered in detail.  In Chapter 6 a Monte Carlo 

simulation for the CRASH model is presented to further analyse confidence levels.   
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2.8 Summary 

In this Chapter the three main impact phase models were discussed in some detail.  

Similarities between the models were highlighted which show that the momentum 

based models of Brach and Ishikawa are essentially different representations of the 

same model.  In addition it was shown that the CRASH model is equivalent to the 

momentum models.  CRASH implicitly defines an impact plane which is orientated 

perpendicular to the impulse and provided a common impact plane is used in each of 

the models identical results can be achieved.   

In the next chapter a series of measuring protocols are described.  These enable 

investigators to determine the work done in causing crush to each vehicle and thereby 

establish the input parameters E1 and E2 to use in the CRASH model as described in 

equation (2.24) 
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3 Measurement of Crush Damage 

 

Chapter 3 

 

Measurement of Crush Damage 

 

3.1 Objectives 

In this Chapter a series of techniques are described to enable investigators to measure 

vehicles and thereby obtain an estimate of the work done in causing crush to each 

vehicle.  The damage profile is an important factor in determining the total work done, 

as too are the direction of the impulse and location of the point of application of that 

impulse.  A comprehensive description of the measuring process as applied in the UK 

is not available elsewhere and is crucial to overall accuracy so is included in this 

Chapter.  The overall objective is to describe measuring protocols so that investigators 

are able to produce consistent and reproducible results.  A new technique is also 

described for measuring severely bowed vehicles.   

  

3.2 Introduction 

The CRASH algorithm as described earlier has lead to the development of computer 

programs to estimate the changes in velocity (DeltaV) sustained by a vehicle in a 

collision.  In essence the CRASH algorithm estimates the work done in causing crush 

from a series of crush damage measurements.  The work done in causing crush is then 

used to determine the change in velocity of individual vehicles.  Commonly used 

implementations in the UK are AiDamage [74], EDCRASH [26], and WinCrash [124]. 

Although such programs are often capable of using scene data for simulations and 

momentum analysis, it is the damage-only option which is of particular interest since 
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the techniques can often be used when there is insufficient information to perform more 

traditional analyses.  A variety of information exists in the literature which describes the 

algorithms used and their derivation, as discussed previously, but little is available 

which describes exactly what measurements should be taken.  A notable exception is 

that by Tumbas and Smith [118].  There remains a considerable amount of confusion 

as to which methods of measuring produce the most realistic results.  The purpose of 

this chapter is to provide an overview of a series of simple measurement protocols 

which have been developed in the UK to overcome some of the traditional 

measurement difficulties.  Substantial parts of this Chapter were published in Impact 17 

(1) in 2009, pp 4 – 12. 

 

3.3 Background 

Alongside the development of the original CRASH program came the descriptive 

Collision Deformation Classification (CDC) [1].  This was developed from an earlier 

coding known as the Vehicle Deformation Index [112].  Using the CDC it is possible to 

concisely define a description of the damage caused to a vehicle using a seven 

character alphanumeric code.  The code is limited in that it can only describe uniform 

perpendicular crush, as only one character is allowed to specify the maximum extent of 

the damage.  More complicated damage profiles cannot therefore be defined.  An 

estimation of the CDC is still required in some programs e.g. EDCRASH [26], but the 

maximum extent is ignored if additional data is supplied in the form of actual 

measurements describing the damage profile.  One part of the CDC which is not 

ignored is the user estimation of the principal direction of force (PDOF) which is 

arguably the most difficult factor to estimate.  Those programs which do not use the 

CDC still require an estimate of this parameter and this is discussed in more detail 

later.   

The theory underlying the determination of the change in velocity from an analysis of 

the crush damage sustained was discussed in Chapter 2.  Following work by Campbell 

[16] , McHenry [65] , Prasad [89] , Smith [105] and others it was shown that the change 

in velocity can be determined from the equations 
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The two energy parameters in equation (3.1) E1 and E2 represent the amount of work 

done in causing crush to each vehicle.  These are of particular interest since if it is 

possible to estimate these values to a reasonable degree of accuracy then it follows 

that a realistic solution can be obtained.  One technique to obtain an estimate of these 

values was described by Campbell [16] who showed that the amount of crush is 

approximately linear with respect to the impact speed with a damage threshold speed 

(intercept) b0 and gradient b1.    

Methods described by Neptune [80], Prasad [88] and Jean [46] show how Campbell‟s 

linear relationship can be used in practice to derive two stiffness coefficients (A and B)  

which describe how the depth of crush is related to the work done in crushing the 

vehicle.  These techniques are based on head-on collisions between vehicles and solid 

immovable barriers.   In a head-on collision with a barrier, the crush sustained by the 

vehicle will be approximately uniform.  As described in Chapter 2 it can be shown that 

the two stiffness coefficients A and B are related to b0 and b1 as follows 

2

0 1 1,       .
m m

A b b B b
L L

   (3.3) 

To determine the two coefficients, suitable values for b0 and b1 are required.   The most 

commonly used and comprehensive database from which stiffness coefficients can be 

obtained is the NHTSA crash test database [83].  This database contains detailed 

descriptions of a variety of tests defined mainly by the US Government to meet various 

safety criteria such as the New Car Assessment Programme (NCAP).  As safety 

requirements have changed over the years, these criteria have altered to match.  As a 

result of these criteria therefore the majority of collisions involve moderate speed 

impacts of around 30 – 35 mph.  Lower speed impacts are rare.  This has a 

consequent effect on the ability to estimate the threshold speed b0 since all the data 

tends to be clustered around 30 – 35 mph.   

The clustering of data at around 30 – 35 mph means that there are few if any data 

points from which to determine a realistic best-fit line using linear regression.  As a 

result, the value of b0 is very often estimated when determining A and B coefficients.  

Both Neptune [80] and Strother et al. [114] suggest a reasonable value is about 5 mph.  
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Varat et al. [121] in a comprehensive study of crash tests suggest that for vehicles 

manufactured during the 1970s and 1980s a suitable value for b0 is 7.5 mph. 

McHenry [65] provides explicit solutions to determine the values of E1 and E2 for either 

two, four or six crush measurements.  Neades [74] extended this model to cater for an 

unlimited number of crush measurements and Singh [99] provides a mathematical 

description of a model which permits an unlimited number of uniformly spaced 

measurements.   

Inherent in this method generally is the assumption that the vehicle is of uniform 

stiffness.  Since the sides and rear of a vehicle may well behave differently to the front, 

separate stiffness coefficients are normally defined for front, rear and side impacts.  All 

the CRASH derivative programs make extensive use of generic stiffness coefficients 

which are used when specific coefficients for a particular vehicle are not available.  

These are derived from the NHTSA database. The generic coefficients partition the 

vehicle data set into a number of categories or classes of vehicle dependent on the 

wheelbase.  Hague [39] suggests that a better classification may be to partition the 

database by model year rather than wheelbase.  Hague cautions that although vehicle 

specific stiffness coefficients should in theory lead to more accurate representations of 

the stiffness coefficients, incomplete or inaccurate data in the NHTSA database can 

lead to erroneous results. 

 

3.4 Crush Measurements 

3.4.1 General 

Other input data for damage measurement takes the form of a series of crush 

measurements (C1 – Cn) from the vehicles involved together with the width of the 

damaged area (L) and an offset (d) describing the displacement of the centre of the 

damaged area with the centre of mass of the vehicle.  Usually the crush measurements 

are obtained by measuring a damaged vehicle and then comparing these with similar 

measurements taken from an undamaged vehicle.  The crush sustained by the 

damaged vehicle can then be determined by simple subtraction and entered into the 

program.  

Figure 3.1 summarises the basic measurements required by CRASH derivative 

programs which are discussed in more detail in subsequent sections. 
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Figure 3.1: Measurements Required by CRASH programs 

 

 

 

 

 

 

 

 

 

 

 

Several assumptions are inherent in the measurement process.  First it is assumed that 

the front of the vehicle is a straight line and that the vehicle can be represented as a 

rectangle.  In essence a real three dimensional vehicle ends up being represented by a 

two dimensional rectangle.  Crush damage to a vehicle can take the form of direct 

contact damage between the vehicles or induced damage.  Direct damage and induced 

damage which is contiguous to the direct contact damage should both be included in 

crush measurements.   

Since real-world collisions frequently result in a non-uniform vertical crush, the level at 

which the measurements are taken is of great importance.  As noted by Tumbas and 

Smith [118] crush measurements generally should be taken at frame height around the 

vehicle.  For front and rear impacts this will be at bumper height.  Where there is a 

distinct difference between the level of maximum intrusion and frame level (which often 

occurs in side impacts due to override by the impacting vehicle) measuring at sill or 

bumper level tends to generate an underestimate of the total energy absorbed.  

However if measured at the level of maximum intrusion the energy absorbed tends to 

be overestimated.  A better estimate of the true value therefore probably lies 
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somewhere between these two extremes.  It is therefore suggested that for side 

impacts in particular, the height at which the crush measurements are obtained is the 

mid-point between frame level and maximum intrusion.  A similar process is also 

suggested by Tumbas and Smith.  Otubushin and Galer [84] indicated that for 

completeness a series of crush measurements is taken, at the level of maximum crush, 

at mid-level and at sill/bumper level.  When estimating DeltaV values however, for 

frontal impacts they utilise the bumper level of crush and for side impacts the mid-level 

crush.  

In any event the process required is to establish a baseline parallel to the undamaged 

face of the vehicle under investigation either parallel to the longitudinal or lateral axes 

of the vehicle as appropriate.  Crush measurements are then taken at intervals from 

the baseline to the along the length of the damaged area to form a description of the 

damage profile. 

One problem for an investigator is to determine the length of the damaged area L.  The 

process as described in the CRASH Manuals is to split up the baseline into equally 

spaced segments and take the crush measurements.  A similar process is described by 

Struble [115].  The baseline width L as shown in Figure 3.1 then forms the 

measurement L which can be entered into the program.  Note that this can result in a 

smaller value for the damage width L than the true width of the vehicle.   

A smaller value for L reduces the area of damage which in turn results in an 

underestimate of the energy absorbed in crush and therefore an underestimate in the 

value of DeltaV.  This problem was recognised by Smith and Tumbas [118].  Their 

recommended solution was to measure the L parameter in the field as described 

above, so that an appropriate spacing could be determined but subsequently enter the 

actual length into the program.    

Although the Smith and Tumbas [118] solution works well for regular damage profiles, 

it does not work so well for those damage profiles where only part of the vehicle width 

is damaged, or where the profile is irregular.  This is because the crush depths 

measured in this way do not necessarily correlate when irregular damage profiles are 

encountered.  A more appropriate solution is that developed by Jennings [47].  This 

method assumes that the damage profile retains a consistent length compared with an 

undamaged vehicle, although it will be twisted into a different shape. A similar 
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assumption was made by Wood et al. [127]  although their calculation of crush energy 

was somewhat different.   

In this method the damage length L is determined by measuring directly along the face 

of the damage.  The spacing between the crush zones can then be determined and 

crush measurements taken from the baseline to the relevant points.  The measured 

value of L is inserted into the program and removes the use of arbitrary adjustments 

suggested by Smith and Tumbas [118].  A secondary beneficial effect is that 

corresponding points on damaged and undamaged vehicles are compared directly.     

The standard CRASH algorithm defines a maximum of six crush measurements which 

does not always permit a realistic representation of the damage profile to be obtained.   

This was noted by Struble [115] who recognised that six equally spaced crush 

measurements can mask or omit details of the profile.  He suggested moving one or 

more of the measurements to capture such detail where necessary.  Such an 

adjustment will introduce additional errors.  An alternative is to use a greater number of 

measurements to capture the profile as is described by Neades [74] or Singh [99].  

 

3.4.2 Determining the damage offset measurement d 

The damage sustained by a vehicle does not always extend over the whole side of the 

vehicle, particularly for those collisions involving side impacts.  Some collisions result in 

damage which not only causes crush to the vehicle but also distorts the original to such 

an extent that it moves outside the bounding rectangle.  Some method to locate the 

damage profile in relation to the original vehicle is required.  This is achieved by the 

use of a damage offset measurement d.  Note that this parameter, together with the 

direction of the impulse (PDOF), affects the length h of the impulse about the centre of 

mass which in turn affects the calculation of the value for δ used in equation (3.1).   

The EDCRASH Training Manual [28] follows CRASH [65] and states that the offset 

measurement d is the difference between the centre of the damaged area and the 

centre of mass of the vehicle.  This is a reasonable definition although it does 

presuppose that the location of the centre of mass is readily identifiable.  Since the 

centre of mass of a vehicle is not readily identifiable in the field this can be problematic.  

In practice a field measurement to the centre of the vehicle may be desirable from 

which the actual offset can be determined.    
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3.4.3 Side impacts  

Side impacts between the wheels of a vehicle can cause a vehicle to bow.  Bowing is 

defined as a vehicle which distorts during the impact so that the ends of the vehicle curl 

round towards each other.  A similar effect is noticed in end-wise collisions where the 

wings fold inwards due to a pole impact.  This effect is shown in Figure 3.2 

 

Figure 3.2: Bowing of a vehicle due to side impact 

 

 

 

 

 

 

 

Vehicles which are not bowed can be measured in much the same way as described 

previously.  A vehicle which is significantly bowed however would result in the 

investigator recording higher crush measurements, since the bowing contributes to the 

net depth as illustrated in Figure 3.2.  It is possible to quantify the amount of bowing 

present by measuring the lateral displacement of the non-struck ends of the vehicles 

using a process described by Tumbas and Smith [118], but this does not lead to a 

simple method for recording the true crush of the vehicle.  It can be argued that since 

the bowing of the vehicle must itself be caused by a force acting through a distance, 

then any apparent additional crush ought properly to be included in the measuring 

process.  However this may lead to an overestimate of the crush damage.  In the 

absence of empirical data to support this argument, it is suggested that any apparent 

crush due to bowing is removed. 

An alternative protocol is proposed which negates the effect of any bowing and 

generates a more accurate representation of the true crush sustained by the vehicle.  

This method requires the construction of a reference frame around both the damaged 

vehicle and its undamaged counterpart.  Measurements are taken at the same equal 
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spacing along either side of the vehicle together with the distance measured along the 

datum lines.  It is important to start the measurements at a readily identifiable point on 

the vehicle so that measurements from an undamaged vehicle generate a one-to-one 

correspondence with the damaged widths.   The method proposed here allows the 

calculation of the width of the vehicle at various points along the damage profile as 

shown by the dashed lines in Figure 3.3.  For clarity only the first damaged 

measurement (W) is shown on the diagram.  The same method when applied to all the 

points allows the true width of the vehicle to be determined at each point. 

 

Figure 3.3: Measurement protocol for bowed vehicles 

 

 

 

 

 

 

 

 

 

By Pythagoras, the width at each point along the damaged profile (Wi) can then be 

calculated from the equation, 
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Measurements are also taken at corresponding points on an undamaged vehicle to 

generate the undamaged width at those points.  The difference between the two widths 

is the crush sustained by the vehicle at that point.  From a series of such 

measurements the damage profile can then be calculated. 
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3.4.4 Determining the principal direction of force (PDOF) 

As shown in Chapter 2, the CRASH algorithm calculates the total change in velocity 

and it is the direction of the user defined PDOF which determines the orientation of that 

impulse.  The PDOF also affects the magnitude of any energy adjustment factor as 

discussed in Chapter 4.   

In practice the PDOF in generally estimated from a visual inspection of identifiable 

components on the vehicle.  It is rarely possible to estimate the PDOF precisely.  An 

estimate is also made of the likely range of values the PDOF might take for a particular 

vehicle.  By Newton‟s Third Law the estimates of PDOF for each vehicle then 

determine the orientation of the vehicles at impact since the impulse acting on one 

vehicle must be opposite in direction to the impulse acting on the other.  It follows that 

the angle between the two vehicles at impact (Ψ) can be determined from the two 

PDOF angles (ζ) as 

1 2       (3.5) 

For some collisions it is possible to align the damage profiles of the two vehicles to 

assist in determining the angle between the vehicles at impact (Ψ).  Where the PDOF 

on one vehicle can be estimated reasonably well, the orientation of the two vehicles 

can then be used to estimate the likely value for the PDOF of the other vehicle.   

In a substantial number of collisions some indication of the pre-impact behaviour of the 

vehicles is known, such as the direction of travel.  The orientation of the vehicle crush 

profiles to estimate the attitude of the vehicles at impact can then be used to limit the 

range of possible values for the PDOF on each vehicle.   

In collisions where sufficient data exists to perform calculations using some other 

model, such as the momentum models described by Brach [11] and Ishikawa [42] an 

alternative estimate of the impulse angle becomes available.  This can then be used to 

determine the PDOF values used in the  CRASH model.   

The requirement to estimate a PDOF in CRASH is a regarded as a major weakness by 

several commentators (e.g. Brach [11], Woolley [132]).  It is noted however that the 

models of Brach and Ishikawa also require an estimate to be made to determine the 

orientation of the impact plane.  As explained in Chapter 2, CRASH also defines an 

impact plane, albeit implicitly.  CRASH effectively defines an impact place that is 

orientated perpendicular to the impulse.  It is suggested that the requirement to 
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determine an impact plane for the models of Brach and Ishikawa inherently suffers 

therefore from similar problems as those involved in determining the PDOF.   

Ishikawa [42] suggests that this plane is formed by the common surface forming the 

damage profile of each vehicle.  A similar choice in CRASH would indicate that the 

impulse and therefore the PDOFs lie perpendicular to the  common damage surface.  

Brach [13] also provides guidelines for choosing the orientation of the impact plane.  

His suggestion is to nominally define the impact plane to the mean angle between the 

attitude of the vehicles at impact and use a range of values to examine the uncertainty 

associated with this choice. 

The techniques described above do allow a reasonable estimate to be made of this 

parameter for each vehicle.  Any such estimates will inevitably be subject to error. 

Smith and Noga [108] for example suggest that the PDOF for each vehicle may be 

subject to a range of ±20° for different investigators.  Suitable ranges of estimates 

should be used to determine the sensitivity of the results as discussed in Chapter 5.  A 

method of refining an initial estimate of the PDOF to match scene data is developed in 

Chapter 7 

 

3.4.5 Determining the point of application 

A common factor in all the planar impact models described, is the assumption that the 

resultant impulse can be modelled as passing through a single point on each vehicle.  

A variety of techniques have been proposed to establish the location of this point.  In 

reality the impact centre varies during the impact as demonstrated by Ishikawa [42].  It 

is difficult to accurately determine the location of the impact centre at any particular 

time so any technique which generates a single point can only be an approximation. 

CRASH [65] defines the point of application as the centroid of the damaged area.   

Geometric methods can be used to establish the relative position of this point to the 

centre of mass.  Brach [9] suggests that this point may be located by using a suitable 

location on the residual crush surface or along the maximum deformed surface.  

Ishikawa [42] proposes a systematic technique for determining the location of this 

point. However this technique requires a knowledge of the linear impulse components 

and angular velocity.  Since these values themselves depend on the choice of the point 

of application, the practical utility of the technique is questionable.  An analysis of the 
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sensitivity of the position of the point of application to the overall result is discussed in 

Chapter 5. 

 

3.5 Variations in stiffness 

In the CRASH algorithm, it is assumed that the face of the vehicle in question is 

homogeneous.  The stiffness coefficients are generally designed to approximate the 

entire face of the vehicle.  Frontal barrier crash tests most closely approximate this 

behaviour.  In reality individual structural components will have different responses to 

crush forces and can be expected to distort at different rates.  Side impact testing is 

generally performed using a vehicle sized barrier which is impacted into the centre side 

of the target vehicle.  By design this naturally tends to miss the very stiff parts of the 

side of a vehicle such as the wheels and suspension.  Since a considerable proportion 

of collisions actually do involve an impact over these areas, then it is reasonable to 

seek to quantify the effect.  One way of performing this adjustment would be to vary the 

stiffness coefficients for those parts of the crush profile which include the wheels.  

Neptune [81] demonstrated a method designed to approximate more accurately the 

overall crush sustained by the two vehicles involved in a collision.  This was achieved 

by adjusting the stiffness coefficients in each individual crush zone so that the force 

acting on each zone was matched to the corresponding zone on the other vehicle.  

Prasad [91] used a similar technique to develop a method for estimating the work done 

in causing crush where one vehicle was not available for measurement.    

From Newton‟s Third Law, the impulse acting on each vehicle should be of 

approximately the same magnitude.  This suggests that the technique proposed by 

Neptune [81] could be extended to refine the stiffness coefficients for either or both 

vehicles in a collision.  This technique was applied by Long [60], Grimes et al. [38] and 

Chen et al. [19].  All noted an improvement in the accuracy of calculated results 

compared with change in velocity data. 

Neptune [82] recognised that vehicles are not homogeneous structures and 

investigated the possibility of determining different sets of stiffness coefficients for 

impacts which did not involve full-overlap collisions.  For frontal impacts he concluded 

that provided damage was contained within the engine compartment, partial overlap 

stiffness coefficients were the same as full-frontal stiffness coefficients.  Where the 

crush extended into the passenger compartment, the he noted that a bi-linear model 
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was more appropriate (Neptune [76]).  This is effectively the same conclusion as 

reached by Varat et al. [121]. 

It is also noted that vehicle design has changed over the years.  This has resulted in 

more modern vehicles being stiffer than their older counterparts.  Considerable 

research has been devoted into determining the most appropriate stiffness coefficients 

to use for more modern vehicles.  Where possible it is suggested that the most 

appropriate coefficients are used depending on the age of the vehicle.  Ideally vehicle 

specific coefficients should be used and can be calculated from crash tests as 

described earlier.  Alternatively generic coefficients based on the work of Siddal & Day 

[98] or Hague [39] can be used.  A discussion of the overall accuracy due to the 

potential accuracy of stiffness coefficients is developed in Chapter 5. 

 

3.6 Summary 

This Chapter has summarised the measurement of damage profiles.  Measurement 

protocols developed over the last few decades in the UK but not covered in the original 

US training manuals provide a realistic and systematic method for recording most types 

of damage.  The essential differences between the measuring protocols applied in the 

US and UK have been outlined.   

In the next Chapter the validity of an energy adjustment factor is discussed.  It is shown 

that the commonly used factor does not provide an adjustment which is supported by 

the energy loss calculated by either Brach‟s PIM or Ishikawa‟s models.  An alternative 

adjustment factor is proposed which does provide equivalence between the various 

models. 
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4 Calculation of Total Crush Energy  

 

Chapter 4 

 

Calculation of Total Crush Energy 

 

4.1 Objectives 

In this Chapter the key features required to determine the total energy absorbed by the 

crush damage are examined.  This can be achieved through the use of energy 

adjustment factors which transform the crush damage measurements normal to the 

undamaged surface into data which account for the direction of the PDOF.  These data 

then provide an estimate of the actual energy.  Note that the energy adjustment factors 

described in this thesis are variously known as „correction factors‟ or „magnification 

factors‟ in other texts.  Existing adjustment factors are discussed and a new factor is 

derived which incorporates several new key features namely, the directions of the 

impulse and closing speed together with coefficients of restitution.  This new factor has 

the advantage of matching the calculated factor using either of Brach‟s or Ishikawa‟s 

methods in simple scenarios.   

 

4.2 Introduction 

As outlined earlier, stiffness coefficients are generally derived from test collisions. In 

essence the assumption is made that residual crush increases linearly with increasing 

speed.  Where impacts occur so that the impulse acts perpendicularly to the face of the 

vehicle, then these coefficients can be utilised directly to determine the crush energy.  

Measurement techniques as described in the previous Chapter are designed to 

measure the crush sustained perpendicularly to the face of a vehicle.  As a result all 
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that can be determined directly is therefore the magnitude of the work done in causing 

crush perpendicularly to the face of the vehicle.   

In collisions where the impulse acts at some angle () to the vehicle surface an 

adjustment factor is required to adjust the value for the work done and relate it to the 

total work done in the collision. The way in which α is defined is illustrated below in 

Figure 4.1 for an impact to the front face of a vehicle.  Corresponding definitions for α 

can also be derived for the other faces of a vehicle. 

 

Figure 4.1: Direction of impulse (PDOF) and angle to vehicle face 

 

 

 

 

 

 

 

 

 

A variety of adjustment factors have been proposed to determine the total crush energy 

from the normal crush energy.  The original adjustment factor was proposed by 

McHenry [65] to be  

2(1 tan )mE E    (4.1) 

where E is the actual crush energy and Em is the crush energy perpendicular to the 

vehicle face obtained directly from crush measurements and stiffness coefficients.   

More recently McHenry [66] suggested an alternative adjustment factor 

(1 tan )m vE E     (4.2) 
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where µv is defined as a coefficient of friction at the vehicle to vehicle  interface and is 

constrained so that 0.40 ≤ µv ≤ 0.55.  Fonda [31] explains however that this particular 

adjustment factor does not follow from physical principles and instead proposes the 

simple adjustment factor  

(1/ cos )mE E  . (4.3) 

In 2009 Vangi [119] proposed another adjustment factor which requires an additional 

series of measurements to determine an estimate of the principal direction of 

deformation (PDOD).  The PDOD is a measure of the force direction for each crush 

zone.  This is applied to each crush zone to determine an energy adjustment factor 

[1 tan( ) tan( )]mE E PDOD  . (4.4) 

This method appears to offer a significant improvement in estimating total crush 

energy.  As outlined in a letter to the editor Brach [5] suggests that this improvement 

may simply be as a result of the improved estimation of the PDOF which results from 

the application of this technique. Equation (4.1) remains the standard adjustment factor 

used by the majority of CRASH derivative programs and is discussed in more detail in 

the next section.    

 

4.3 Standard energy adjustment factor  

The energy adjustment factor described by McHenry [65] and shown in equation (4.1) 

can be determined from an analysis of the impulse and the direction that impulse 

makes with the face of the vehicle being measured as shown in Figure 4.1.  Crush 

measurements Cn can be made perpendicular to the vehicle face, i.e. parallel to Pn 

from which the force Fn can be calculated.  McHenry states that the actual force and 

actual crush can then be given by the expressions 

,       
cos cos

n n

 
 

F C
F C . (4.5) 

Since work done is calculated as the dot product of force and displacement, McHenry 

suggests that the total energy can be calculated as 
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Brach [9], [11], [13], [10], claims that McHenry‟s approach effectively treats energy as a 

vector quantity.  Force and displacement are vectors which in principle can be 

transformed in this way for non-normal forces to calculate energy so this model does 

not appear to treat energy as a vector.  However McHenry‟s approach does make the 

implicit assumption that vehicle stiffness coefficients are isotropic as identified by 

Tanny [116] and Vangi [119].  There does not appear to be any practical reason upon 

which to base this assumption and vehicles may well exhibit different deformation 

behaviour when subject to impulses with an additional tangential component to the 

original vehicle face.   

There is also a subsidiary problem as this energy adjustment factor is unbounded in 

this model.  At large angles of incidence the adjustment factor increases substantially.  

In order to compensate for this, the maximum value that this adjustment factor takes is 

limited to a value of 2.0  This is achieved at an angle of incidence of 45°.  McHenry [65] 

suggests that the reason for this limitation is that „the tangential frictional force 

component cannot grow larger than the normal force.‟  Whether this claim is justified is 

not considered but is does provide a useful way of constraining the energy adjustment 

factor.  In the next section an analysis is presented which outlines the principles 

governing the estimation of energy loss in a collision.   

 

4.4 Energy loss in vehicle collisions 

Although energy loss is a not a vector quantity, it is helpful to determine the work done 

by an impulse in two orthonormal directions.  This is the approach adopted by Brach 

[9], [11], [13], [10].  A useful result first noted by Kelvin and Tait [53] and expanded by 

Stronge [113] enables the total work in a collision to be partitioned into normal and 

tangential terms.  Using the subscript i for each term, their results states that the partial 

work (Wi)  done on colliding bodies by the component of the reaction impulse (Pi) 

equals the scalar product of this component and half the sum of the initial (Ui) and final 

(Vi) velocities of the contact point in the direction of this impulse component i.e. 

( )
2

i
i i i

P
W U V  . (4.7) 
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The total work is equal to the sum of the of the work done by individual terms.  In a 

planar collision therefore the total work done can be expressed as the sum of the 

normal and tangential contributions so that 

n tW W W  . (4.8) 

The impulse is equal in magnitude and opposite in direction for each vehicle giving rise 

to separate expressions for equation (4.7).  As demonstrated by Vangi [119], relative 

velocity components of the contact point can be used in equation (4.7).  Equation (4.7) 

can then be substituted into equation (4.8) to provide the more useful equation  

2 1 2 1 2 1 2 1[( ) ( )] [( ) ( )]
2 2

n t
n n n n t t t t

P P
W U U V V U U V V        . (4.9) 

In the absence of external forces, the work done by the impulse W is assumed to be 

the same as the loss in kinetic energy E.  Together with the definitions of en and et as 

defined earlier in equation (2.14) and URn, URt, VRn, and VRt as defined in equation 

(2.15) this allows the total work done in a collision to be expressed as 

(1 ) (1 )
2 2

n Rn t Rt
n t

PU PU
E e e    . (4.10) 

A ratio Wr relating the work performed by the normal and tangential impulse 

components can also be derived using the earlier definitions of µ, which is the ratio of 

the tangential and normal components of the impulse [equation (2.7)], and r, which is 

the ratio of the tangential and normal closing velocity components [equation (2.12)] so 

that  

(1 )

(1 )

t t
R

n n

W e
W r

W e



 


. (4.11) 

It follows from equation (4.11) that the total energy lost as a result of the collision can 

be found from  

(1 )
1

(1 )

t
n

n

e
E E r

e


 
  

 
. (4.12) 

Equation (4.12) is of central importance to this analysis.  It shows that the total work 

done by the impulse is equivalent to the work done by the normal impulse component 
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multiplied by an adjustment factor.  This adjustment factor consists of the product of the 

tangent of the impulse ratio, the tangent of the ratio of the closing speed and the ratio 

formed by (1-et)/(1-en).  Note that equation (4.12) remains valid for all orientations of 

the axis system and the parameters µ and r change depending upon that orientation.  

In this analysis however the orientation with respect to each of the individual vehicle 

faces is required to determine the values of the parameters µ and r.  For an individual 

vehicle, the value of µ can be defined as the tangent of the angle that the impulse 

makes with the face of the vehicle (i.e. angle  as defined earlier).  A value for r can be 

defined similarly as the tangent of the angle (β) that the closing speed vector makes 

with the face of the vehicle.  The parameter r is defined by the impact configuration and 

can be expressed in terms of the restitution coefficients en and et together with A, B, C 

and µ by solving equation (2.45) to give 

t

n

(1 )[ (1 )]

(1 )( )

e B C
r

e B A





  


 
. (4.13) 

The value of the angle β may be difficult to quantify.  It is noted however that  and β 

are angles which will have a fixed orientation for any particular collision.  It follows that 

there will be a difference between them (angle δ) which will remain constant for any 

orientation of the impact plane.  The value of δ can therefore be calculated from any 

arbitrary orientation of the impact plane from the values of µ and r obtained for that 

particular orientation such that 

1 1tan ( ) tan ( )r    . (4.14) 

With the substitution of tan() for µ and δ, equation (4.12) can then be expressed as  

(1 )
1 tan( ) tan( ) .

(1 )

t
n

n

e
E E

e
  

 
   

 
 (4.15) 

Since equation (4.15) does not explicitly contain r it should be easier to use in practical 

situations.  The manner in which the adjustment factor described in equations (4.12) or 

(4.15) can be applied to actual vehicle collisions is discussed in subsequent sections.   

 



4. Calculation of Total Crush Energy Jon Neades 

52 

4.5 Application to actual collisions 

4.5.1 Common post-impact velocity scenarios 

To determine how equation (4.15) can be used to establish the total energy in practical 

situations, it is helpful to consider collisions where there is a common post-impact 

velocity in both the normal and tangential directions before considering more general 

scenarios.  All the existing adjustment factors implicitly make the assumption and do 

not deal with the more general case.  Where there is a common post-impact velocity, en 

= et = 0 so that equation (4.15) can be simplified to become 

 1 tan( ) tan( ) .nE E       (4.16) 

Note that if δ is zero then equation (4.16) reduces to equation (4.1).  To further simplify 

this discussion an example collision is chosen such that the measured faces of the 

vehicles are parallel.  A suitable collision for these purposes is RICSAC test 9 as 

described in Smith and Noga [109].  The impact configuration and angles are illustrated 

in Figure 4.2 

 

Figure 4.2: RICSAC 9 impact configuration 
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In this collision both vehicles were reported to have been travelling at the same speed 

at impact and collided at 90°.  There was no pre-impact rotation hence the angle that 

the closing speed vector makes with the vehicle face is 45° for both vehicles.  The 

impact and configuration and vehicle parameters define the values of A, B and C used 

in each of the models and, assuming a common post-impact velocity, the impulse and 

therefore the PDOF is found [using equation (2.45) or equation (2.11)] to be at an angle 

of 31.7° to the front of vehicle 1. 

As previously discussed, Brach [13] identified that the orientation of the impact plane is 

immaterial whenever there is a common post-impact velocity.  This means that in such 

collisions the impact plane can in principle be rotated so that it is aligned to either of the 

measured faces of the vehicle.  In this collision the impact plane can be rotated so that 

it is parallel to the front of V1 and right hand side of V2 as shown in Figure 4.2. Once 

aligned the normal and tangential energy values can be calculated using either Brach‟s 

PIM or Ishikawa‟s PIM models and compared with the energy values calculated using 

the method proposed here.  This provides a useful check on the correspondence of this 

method to the results of Brach or Ishikawa‟s models. 

In this collision CRASH measurements and generic stiffness coefficients suggest that 

the work done in causing crush normal to the respective vehicle faces was 28436 J for 

vehicle 1 and 7867 J for vehicle 2.  With the values for α and β for this impact 

configuration the adjustment factor is the same for each vehicle i.e. 1.6174 giving a 

total amount of work done in causing crush of 58716 J.  This suggests a pre-impact 

speed of about 10.68 ms-1 for each vehicle.  This overestimates the measured pre-

impact speed of each vehicle of 9.43 ms-1 but matches well with the experimental 

energy loss of 56066 J reported for this collision by Brach [6].  More importantly the 

normal and tangential crush energies calculated using this adjustment factor are 

identical to the  normal and tangential crush energies calculated by either Brach‟s or 

Ishikawa‟s models.   

Also of interest is that with the recorded pre-impact speeds, the momentum only based 

models of Brach and Ishikawa indicate a total energy loss of 45796 J with a normal 

component of 28314 J.  Since this figure is somewhat less than that calculated 

previously, this suggests that the normal crush energies calculated by CRASH using 

the generic stiffness coefficients may be overestimated in this case.  Assuming that 

28314 J is the correct value for the normal crush energy, a comparison between the 

various energy adjustment factors for this collision are shown in Table 4.1  
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Table 4.1: Comparison between various energy adjustment factors 

Method Factor Tangential (J) Total (J) 

Brach N/A 17482 45796 

1+tan(α)tan(β) 1.6174 17482 45796 

1+tan2(α) 1.3811 10790 39104 

1+µv tan(α) µv = 0.45 1.2778 7866 36180 

1+µv tan(α) µv = 0.55 1.3396 9615 37929 

1/cos(α) 1.1752 4961 33275 

 

 

 

This comparison shows that for this particular collision the adjustment factor presented 

here is larger than the other adjustment factors.  (Note: The adjustment factor 

proposed by Vangi [119] has not been considered as insufficient information exists to 

calculate the values of the principal direction of deformation (PDOD) for each of the 

crush zones.) 

It is helpful to examine the effect of the adjustment factors with differing values of α and 

β for a collision.  For any collision the angle β depends on the relative speeds of the 

vehicles.  In RICSAC 9 both vehicles were moving forwards at impact.  The angle β 

can in theory range between 0° indicating that vehicle 2 was stationary at impact and 

approach 90° indicating that V1 was almost stationary.  Note that V1 cannot actually be 

stationary at impact otherwise no crush in the normal direction can be sustained.  

Values outside this range imply a negative velocity for one or other of the vehicles 

which can be discounted for this collision.   

Assuming that the damage sustained and point of application of the impulse remain 

constant, the direction of the impulse (and therefore α) can be calculated from equation 

(2.45).  Figure 4.3 shows how α varies with different values of β assuming a common 

post-impact velocity 
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Figure 4.3: Graph to show variation in α with β 

 

For this collision the difference between the two values is about -6.7° when β is zero 

and increases to about 11.6° when β is 90°. Using the values for α derived by these 

calculations a graphical comparison can be made between the various energy 

adjustment factors as shown in Figure 4.4 

Figure 4.4: Comparison of adjustment factors 
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4.5.2 Tangential slip 

Although the adjustment factor proposed here is lower than the standard adjustment 

factor for angles of β up to about 15° in this collision, above this value the adjustment 

factor increases more rapidly.  This will of course be true whenever β is greater than α 

provided there is a common post-impact velocity.  At high angles of incidence however 

there in an increased likelihood that the relative tangential velocities will not reach a 

common value along the contact plane resulting in slip.  Any such slip will be 

manifested in a value for et such that -1 ≤ et ≤ 0.  Tangential slip along the contact 

plane also affects the value for µ and as a consequence the value of α as shown in 

equation (2.45) which is reproduced below 

(1 ) (1 )

(1 )(1 ) (1 )

t n

n t

e rA B e

e C rB e


  


   
. (4.17) 

Since r = tan(β) and µ = tan(α) the relationship between et and α can be established 

from this equation for a particular value of β.  The graph in Figure 4.5 shows such 

relationships for the RICSAC 9 collision with various values of β. 

 

Figure 4.5: Graph showing relationship between α and et 
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post-impact velocity is assumed.  In practice the energy adjustment factor is effectively 

bounded by the onset of tangential slip which reduces the angle α and alters the ratio 

(1-et)/(1-en).  The overall effect of tangential slip on the adjustment factor is illustrated 

in Figure 4.6 

 

Figure 4.6: Graph showing overall effect of et on the new adjustment factor 
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Figure 4.7: Speed / Crush graph for US Ford Escorts 

  

From these tests the intercept with the y-axis is 3.09 ms-1.  This data produces the 

following stiffness coefficients A = 611.3 N/cm and B = 46.2 N/cm2.  A suitable angled 

barrier test (Test No. 353) was found in the NHTSA database involving a US Ford 

Escort.  In this test, the Ford Escort was guided into impact with a rigid barrier angled 

at 30° to the direction of travel.  Using the stiffness coefficients calculated above the 

recorded crush measurements indicate a normal crush energy of 110.6 kJ.  In this 

collision a small PDOF can be expected due to the impact configuration.  The impact 

configuration and PDOF are shown in Figure 4.8   

Figure 4.8: Impact configuration for NHTSA test 353 
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From Brach‟s PIM model a PDOF value of -6.8° is calculated together with a pre-

impact speed for the Escort of 13.86 ms-1.  This underestimates the actual pre-impact 

speed of 15.70 ms-1 by 12%.  It is apparent however that the recorded damage profile  

does not match the damage profile as shown in photographs of the vehicle post-

impact.  The photographs show that damage extends across the entire front of the 

vehicle.  It seems likely that the investigators recording this collision only recorded the 

direct contact damage and did not record the induced damage.  If such information 

were available it would increase the area of damage thereby increasing the total 

energy and increasing the calculated impact speed. 

A series of angled barrier tests involving the repeated testing of a Ford Escort were 

also found, tests 1633, 1634 and 1635 refer.  These tests comprised of a rigid mobile 

barrier (mass 1235 kg) colliding with the front left corner of the Escort at an angle of 

21°.  The results from the first test (No. 1633) show that the work done in causing crush 

normal to the front of the Escort was 13312 J.  This indicates an initial speed for the 

barrier of about 6.63 ms-1 which overestimates the actual impact speed of 6.36 ms-1 by 

4%.  In this collision the relative closing speed lies along an angle of 21° to the front 

face of the Escort so β is not zero. Applying the energy adjustment factor in equation 

(4.12) or (4.15) adds an additional 1445 J increasing the calculated pre-impact speed 

to 6.98 ms-1 which represents an overestimate of nearly 10%.  

The second test (No. 1634) showed that the work done in causing crush was 46065 J 

with a calculated initial speed for the barrier of 12.33 ms-1 (13.00 ms-1 after energy 

adjustment) The recorded initial speed was 12.57 ms-1 suggesting a close match.  

However these were a series of cumulative crash tests.  As shown by Prasad [90] the 

total work done in causing crush using repeated crash tests is 

21
1 12

2 21 1
2 1 22 2

2 2 21 1 1
3 1 2 32 2 2

,

,

.

E mv

E mv mv

E mv mv mv



 

  

 (4.18) 

Equation (4.18) indicates that the equivalent impact speed for test 1634 was 14.08 ms-1 

thus the calculated value of 13.00 ms-1 underestimates the equivalent impact speed by 

about 7%.  Vehicle crush measurements are not recorded for test 1635 so this test is 

unsuitable for analysis.  The spread of these results from this limited series of tests 

does not indicate whether or not the energy adjustment factor given in equation (4.12) 

or (4.15) is a suitable adjustment factor for real-world collisions.    
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Vangi [119] also recognised the paucity of suitable data and as an alternative used a 

finite element model (LS-DYNA) in order to generate validation data.  This series of 

tests involved simulations of crash tests with rigid barriers at a range of values from 10° 

to 50°.  Vangi [119] did not report the PDOF or the pre-corrected energy values used.  

Vangi [120] has subsequently provided the pre-corrected energy values he calculated 

for this series of simulations.  These are shown in Figure 4.9 and Figure 4.10   

Figure 4.9: 20 km/h simulations (Vangi 2009) 

 

Figure 4.10: 40 km/h simulations (Vangi 2009) 
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Vangi has not published the damage profiles sustained in his series of simulations.  

However, in a series of angled barrier tests, increasing the angle of incidence will 

produce increasing damage to the corner of the vehicle which is struck in the same 

manner as shown in Figure 4.8.  This has the effect of moving the point of application 

of the impulse towards the struck corner.  In turn this increases the total increase in 

rotation which can be expected as a result of the collision.  It follows that although the 

initial kinetic energy may be the same in each collision, as consequent on using the 

same vehicle at the same speed, less damage will be sustained with increasing angles 

of incidence since some of that kinetic energy will be transferred into kinetic energy of 

rotation.   

The results of  simulations from Brach‟s model at 40 km/h with increasing movement of 

the point of application away from the centre of the vehicle are shown in Figure 4.11   

Figure 4.11: 40 km/h simulations using Brach's PIM 
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4.5.4 Other impact configurations 

The examples used thus far have considered only collisions where an impact plane can 

be defined such that the values of α and β are common to both vehicles.    In such 

collisions it has been shown that the adjustment factor defined by equation (4.12) 

provides energy adjustment factors and total energy loss which match those predicted 

using Brach‟s and Ishikawa‟s models.  Neither of these models can be used to estimate 

the energy dissipated by each vehicle due to the component of the impulse in a 

particular direction; they merely provide the total loss in any particular direction.   

In collisions where α and β are different for each vehicle a different adjustment factor 

will apply to each vehicle and neither of the momentum based models can be utilised to 

provide comparison data.  Figure 4.12 shows a generalised collision where the impact 

angle (Ψ) is defined as the angle between the vehicles. 

 

Figure 4.12: Generalised impact configuration 
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One the corrected energy value is computed it can be entered into the CRASH 

equation to determine the total change in speed for each vehicle.  This equation, 

described in Chapter 2 is repeated below 

2 1 2

1

1 1 2 2 1

2 ( )(1 )
.

( )(1 )

p

p

m E E e
v

m m m e 

 
 

 
 (4.21) 

As explained in Chapter 2, the Δv obtained from equation (4.21) is the total change in 

velocity along the line of application of the impulse P.  It is apparent from equation 

(4.21) that although changing the values of E1 and E2 in this equation will affect the 

magnitude of Δv, altering these values has no effect on the values of δ1 or δ2.  These 

are defined solely by the yaw moments of inertia and the lengths of the moment arms. 

Changing the values of the work done in causing crush to each vehicle makes no 

difference therefore to the relative magnitudes of their closing or separation velocities.  

Although their absolute magnitudes will change, the directions of the velocity vectors 

do not.  It follows that once the pre and post-impact velocity directions are defined, it is 

only their magnitudes which will be determined by altering the total energy work done 

by using any adjustment factor.   What does have an effect however is restitution.  In 

the next section the effects of restitution coefficients and how they can be related to 

collisions are discussed in more detail. 

 

4.6 Restitution effects 

The energy adjustment factor given in equations (4.12) and (4.15) is the product of 

three factors.  The closing speed and impulse angles (α and β respectively) are 

multiplied by the third factor, consisting of the ratio (1-et)/(1-en).  The discussion so far 

has only considered collisions where a common post-impact velocity could be assumed 

so that this ratio could be ignored.  The effect of a non-zero tangential coefficient of 

restitution et was also mentioned to show that it provides a constraint on the otherwise 

unbounded behaviour of the overall factor.  In this section the nature of restitution 

coefficients are discussed along with their effect on the adjustment factor as a whole.   

As shown previously, the calculation of work done in causing crush damage is related 

to both the impulse and the closing speed.  It is helpful first to determine how these 

parameters can be related to each other.  In Brach‟s PIM model [11] the impulse 
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components normal and tangential to an impact plane can be calculated from the 

equations  

(1 )n Rn
n

m e U
P

A B





, (4.22) 
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A B







 


. (4.23) 

Substitution of equations (4.22) and (4.23) into equation (4.10) produces 
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 (4.24) 

or alternatively 
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. (4.25) 

Note that in both equations (4.24) and (4.25) the first term corresponds to the energy 

loss from the component of the impulse normal to the impact plane and the second 

term to the loss of energy from the component of the impulse tangential to the impact 

plane.   

The magnitude of the total impulse P can be derived from equations (4.22) and (4.23).  

Substitution of equation (4.10) and the definition of r as defined in equation (2.12) leads 

to an expression relating the total energy loss to the impulse  

22 (1 )(1 )

( )[1 (1 )]

n

n t

Em e
P

A B e r e



 

 


   
. (4.26) 

Equation (4.26) is effectively the same as equation (2.46) derived by Brach [9].  

However in equation (2.46) Brach uses an additional term µc which he defines so that 

µc is just sufficient to halt relative tangential motion during the impact.  Brach defines 

the term µc in terms of the relative closing speed r and et as 

/ (1 )c tr e   . (4.27) 

Equation (4.26) provides a description of the magnitude of the total impulse in terms of 

the energy lost through causing crush damage.  A similar expression can also be 
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derived using Ishikawa‟s impulse components.  As shown in Chapter 2, equation (4.26) 

is equivalent to the CRASH equation [equation (2.51)] whenever µ is zero.  A zero 

value for µ occurs when the impact plane required in Brach and Ishikawa‟s models is 

rotated so that the plane is perpendicular to the impulse thereby eliminating any 

tangential impulse component. 

A potential problem in determining coefficients of restitution is that they are effectively 

defined in Brach‟s and Ishikawa‟s models relative to an impact plane.  In Ishikawa‟s 

model a separate tangential coefficient of restitution is explicitly defined, whereas in 

Brach‟s model the tangential coefficient is implicitly defined through the coefficient µ0.  

As already discussed, these models are generally utilised by defining a suitable impact 

plane and adjusting the pre-impact velocities and coefficients with that impact plane to 

produce some desired output scenario.  Once the coefficients and pre-impact velocities 

are set, any rotation of the impact plane necessarily requires different values for the 

coefficients to maintain the same output scenario.   

The energy adjustment factor defined by equation (4.12) or (4.15) requires however the 

effective coefficients of restitution normal and tangential to the face of the vehicle under 

investigation.  The problem is that in order to determine these coefficients relative to 

the face of each vehicle, the impact plane must be rotated for each vehicle so that it is 

perpendicular to the original face of the vehicle. This is illustrated in Figure 4.13 where 

a collision is depicted together with the arrows showing the desired paths of the centres 

of mass. 
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Figure 4.13: Impact configuration and desired output 

 

The solution to this problem requires that some method of transforming the coefficients 
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To simplify this discussion, it is assumed further that relative motion tangential to the 

impulse ceases at some stage during the collision so that et = 0.  In reality, this 

additional assumption is also likely to be true in practice, unless the collision is a 
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sideswipe.  Brach [10] notes for example that in all the RICSAC series of tests relative 

tangential motion did cease during impact.  Furthermore, Brach [11], [13] recommends 

that a common tangential post-impact velocity should be assumed „unless the physical 

evidence strongly indicates otherwise’.  In Brach‟s model a common tangential velocity 

is assured when µ = µ0  With the impact plane orientated so that it is perpendicular to 

the impulse µ = µ0 = 0. 

Some work has been done to determine ranges for [normal] coefficients of restitution 

likely in vehicle to vehicle collisions and a comprehensive analysis using the NHTSA 

crash tests [83] is provided by Monson and Germane [71].  They conclude that the 

closing speed is highly influential in determining the magnitude of restitution.  Their 

results show a spread of coefficients from 0 to about 0.3 which generally decrease with 

increasing closing speed.  They note however that sufficient data to establish firm 

results only exists for full frontal vehicle to barrier collisions.  Their results for vehicle to 

vehicle impacts, angled impacts, side impacts and rear impacts are less conclusive.  

These results broadly mirror earlier studies by Prasad [87], Ishikawa [43], [42] and 

Kerkhoff et al. [54]. 

It is arguable whether the normal coefficient of restitution en determined from empirical 

data should be applicable in a direction normal to the original face of a vehicle or along 

the line of action of the impulse.  The method developed here however allows 

conversion of coefficients to and from any orientation of the impact plane.  Equation 

(4.17) can be written 
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Equation (4.29) can then be substituted into equation (4.26) to eliminate et and then 

solved for en to yield 
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For any collision once E, the total values for the work done in causing crush and P, the 

total impulse, are established for one particular orientation of the impact plane, then 

these totals must apply to every orientation of the impact plane.  As the impact plane is 

rotated about the impulse, the value of µ also changes as the proportion of normal and 

tangential components varies.  Equation (4.30) can then be utilised to find the value of 

en for any other orientation.  Once en has been found, the tangential coefficient of 

restitution et can be found with either of equations (4.28) or (4.26). 

To demonstrate the effects of this technique, the source data from RICSAC 9 is used.  

In this test collision two vehicles collided at 90° as shown in Figure 4.2  For this 

illustration, when the impact plane is orientated perpendicular to the impulse a nominal 

value en = 0.3 is assumed.  In this orientation a tangential coefficient of restitution et = 0 

is also assumed.  Figure 4.14 shows the variation of µ with different orientations of the 

impact plane about the impulse.   

 

Figure 4.14: Variation in µ compared with angle of Γ from impulse 
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Note: Although it may be expected that the value of µ should lie between -1 and +1, it 

can be seen from Figure 4.14 that once the impact plane lies outside the range -45°  to 

45° from the direction of the impulse then the value of µ is not so bounded. Outside this 

range the magnitude of the tangential impulse component is greater than the 

magnitude of the normal impulse component which produces a value for µ greater than 

unity. 

A zero value for µ is obtained when Γ is orientated perpendicular to the impulse.  In this 

example this occurs at an angle of about 29.5° from the face of the vehicles.  With the 

further assumption that the vehicles were travelling at their measured speed of 9.43 

ms-1 the total work done in causing crush is calculated to be 41573 J and the total 

impulse was about 9243 kg ms-1.  From equations (4.30) and (4.28) the relationship 

between the two coefficients of restitution and the angle of Γ from the impulse is as 

shown in Figure 4.15   

 

Figure 4.15: Graph to show en and et compared with angle of Γ from impulse 

  

For any particular orientation of the impact plane, Figure 4.15 shows the corresponding 

values for the coefficients of restitution required to maintain the same total work done 

(E) and total impulse (P).  In order to maintain the same total work done and total 

impulse, it can be seen that the coefficients tend towards asymptotes corresponding to 

orientations of the impact plane normal and parallel to closing speed vector r. 
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In this example nominal values of en = 0.3 and et = 0 were assumed with the impact 

plane orientated perpendicular to the impulse.  The same technique [using equations 

(4.30) and (4.28)] can also be used if the values for en and et are known at some other 

orientation of the impact plane.  For example, Brach [6] reports that for RICSAC test 9 

he determined a normal coefficient of restitution en = 0.4 with an impulse ratio µ of 

0.486 and that there was a common post-impact velocity tangential to the impact plane, 

i.e. et = 0.  This impulse ratio corresponds to an impact plane aligned with the faces of 

the vehicles as shown in Figure 4.2  From this data the impulse is about 25.9° from the 

faces of the vehicles.  Calculation shows that the effective coefficients when the impact 

plane is orientated to the impulse are en = 0.27 and et = -0.38   A graph to show the 

values of coefficients at other orientations of the impact plane is shown in Figure 4.16  

 

Figure 4.16: Graph to show en and et with en = 0.4 when Γ = -25.9 

 

 

Note that since a common pre-impact speed is assumed as before together with no 

change to the other data, the graph in Figure 4.16 shows asymptotes in the same 

location as in Figure 4.15.  The points where the coefficients intersect the x-axis 

however are displaced to the left by 25.9°.  Again this shows that with arbitrary 

orientation of the impact plane, equations (4.30) and (4.28) can be used to determine 

the exact coefficients of restitution required. 
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4.7 Summary 

In this Chapter a new method was derived to determine the energy adjustment factor 

applicable to each vehicle in a particular collision.  It incorporates the key features 

which can affect adjustment factors, the direction of the impulse, the direction of the 

closing speed and restitution in both the normal and tangential directions.  This method 

also has the advantage of matching the calculated factor using either of Brach‟s or 

Ishikawa‟s methods.  In some scenarios this method provided results which correspond 

to practical solutions.  However further work is required to determine whether this new 

method can be used to model all real life collisions. 

The new energy adjustment factor described in this Chapter has the disadvantage of 

requiring knowledge about the direction of the closing velocity of the two vehicles.  This 

appears to preclude its utility in scenarios where there is no scene data from which to 

determine the angle between the vehicles‟ closing speeds.  However a technique is 

developed in Chapter 7 which addresses this shortcoming.  In that Chapter it is shown 

how the pre- and post-impact velocities may be determined for the majority of vehicle 

to vehicle collisions from an analysis of their changes in velocity.  As outlined above, 

once the direction of the closing velocity vector is established, the adjustment factor 

only affects the magnitude of the two values for crush energy.  This suggests a two 

stage process,  the first stage using arbitrary values for E1 and E2 simply to establish 

the angle of the closing velocity vector and a second stage where the adjusted values 

for E1 and E2 are used to determine the magnitude of the respective vehicles‟ 

velocities.   

An analysis of the potential accuracy of this new energy adjustment factor is described 

in Chapter 7 once a technique is available from which to determine the closing speed 

angle.  Before describing the development of that new technique however, the next 

Chapters examine and discuss the potential accuracy of the CRASH model.  

 



72 

5 Accuracy of the CRASH Model 

 

Chapter 5 

 

Accuracy of the CRASH Model 

 

5.1 Objectives 

In this Chapter the potential accuracy of the various impact models is examined and 

compared with previously published work.  Major sources of error are identified and 

their likely magnitudes are estimated to provide an estimate of the overall accuracy 

which can be expected from the impact models.      

 

5.2 Introduction 

Three impact models are considered in detail by this thesis, the planar impact 

mechanics model by Brach [11], a similar model by Ishikawa [43] and the CRASH 

model described by McHenry [65].  As shown previously Brach‟s and Ishikawa‟s 

models are equivalent and produce identical results with identical input data.  The 

CRASH model can also produce identical results provided the impact plane required in 

the Brach and Ishikawa models is orientated so that it is perpendicular to the impulse 

as demonstrated in Chapter 2.   

The models by Brach and Ishikawa are essentially forward iteration models and require 

an estimate of the initial velocities in order to determine the post impact velocities and 

Δv as the output.  CRASH provides Δv directly as an output from an estimate of the 

work done in causing crush to each vehicle.  Provided that a realistic estimate of the 

work done in causing crush (crush energy) is available, then a reasonable estimate of 

Δv can be obtained.  The estimate of work done in causing crush can be obtained after 



5. Accuracy of the CRASH Model  Jon Neades 

73 

the event using techniques developed in Chapter 3 and Chapter 4.  CRASH therefore 

has a potential advantage over the other models in that it does not require any 

knowledge of the post-impact conditions upon which to base initial estimates of the 

impact speed.  However, estimates of  crush energy are not precise and are subject to 

error.   

An obvious way of calibrating all the models is to compare the output of the models 

with known data.  Both Brach [11], [7], [9], [10], [12], [13] and Ishikawa [43], [42], [41] 

provide comparisons in their works to full scale crash tests.  Brach has also performed 

several comparison tests between his model and CRASH.  These comparisons have 

however tended mainly to highlight differences between Brach‟s model and CRASH.  

As shown in Chapter 4, Brach‟s comparisons do not necessarily match the orientations 

of the impact plane required to directly compare the results using his model with those 

generated by CRASH.  In particular Brach does not allow CRASH to utilise coefficients 

of restitution.  Without restitution a direct comparison between these models cannot be 

entirely valid.  Although the original formulation of CRASH does not incorporate such 

coefficients, Smith [105] shows that it is possible to incorporate restitution into the 

CRASH model.  In this Chapter Brach‟s results are re-analysed to provide a more 

realistic comparison between the models. 

Several others have also provided comparisons between real-world collisions and the 

CRASH model in an effort to demonstrate the overall accuracy.  One notable paper 

concerning the accuracy of CRASH was provided in 1982 by Smith and Noga [108].  

Lenard et al. [56], [57] discuss the potential accuracy of CRASH in vehicle collisions.  A 

similar earlier study by Jennings and Jones [48] investigated whether CRASH was 

suitable for use with European vehicles.  Little work has been performed however into 

determining the theoretical accuracy of CRASH compared with other models.  This 

Chapter also provides an analysis to determine the theoretical accuracy which can be 

expected from CRASH.  Before describing the theoretical accuracy however, the next 

section examines the results of empirical studies. 

 

5.3 Empirical Studies 

The majority of existing studies investigate the accuracy of CRASH when compared to 

actual vehicle to vehicle (VTV) or vehicle to barrier (VTB) collisions.  Due to the 

inherent problems in determining actual Δv values for real-world collisions these 
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studies are all based on the results of instrumented test collisions.  For convenience 

these comparisons are separated into two groups.  UK based studies by Jennings and 

Jones [48] and Lenard et al. [56], [57] and US based studies by Smith and Noga [107] 

Brach [6], Ishikawa [42] and Day and Hargens [25].  Particular attention is paid to the 

well known RICSAC series of crash tests summarised by Jones and Baum [51]. 

5.3.1 UK Based studies  

The study by Jennings and Jones [48] was designed primarily to determine whether or 

not the version of CRASH in use at that time (CRASH2) was suitable for use with 

European vehicles.  CRASH was developed originally in the USA as an algorithm to 

determine Δv and the stiffness coefficients were determined solely using American 

vehicles which potentially could be significantly different to European vehicles.  The 

accident environment was also considered to be significantly different to that in the 

USA and the majority of the paper is devoted to analysing differences between the two 

environments.  A total of 200 cases were considered of which 100 were considered 

suitable for analysis using CRASH.  The remainder were mainly rejected for analysis 

as they were thought to violate one or more of the CRASH assumptions listed by 

McHenry [65] and described in Chapter 2.   

As part of the study Jennings and Jones updated the stiffness coefficients to match 

more accurately the threshold damage level for European vehicles developed from a 

series of crash tests.  They noted that in all but five collisions the estimated Δv was 

within ±10 mph of the actual Δv compared with 13 collisions falling outside this range 

using the CRASH2 default stiffness coefficients.   

The study by Lenard et al. [56] analysed 26 front and 26 side barrier tests performed 

under EuroNCAP between 1996 and 1998.  The Δv values were determined using 

CRASH3 and default stiffness coefficients.  They determined that without using custom 

vehicle stiffness coefficients in frontal VTB collisions the Δv was systematically 

underestimated by about 7 kmh-1 with a range of about ±10 kmh-1 for CRASH results.  

For side impacts they concluded that CRASH underestimated by 1 kmh-1 with a range 

of about ±5 kmh-1.   Of note is that in this study the energy absorbed by deformable 

barriers was also analysed and incorporated into the calculations.  Comparative tests 

excluding the work done in causing crush to the barriers was not provided.  However 

the mean value for work done in causing crush to the barriers was estimated to be 

about 30% in the EuroNCAP tests which were considered. 
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Lenard et al. [57] update their earlier work to provide a comparison with a total of 137 

test collisions involving VTV and VTB (rigid and deformable) crash tests.  The results 

from these test collisions are summarised in Table 5.1  

 

Table 5.1: Statistical properties of CRASH3 results (Lenard et al. 2000)   

  
Absolute Error (km/h) 

ΔVcrash - ΔVtest 

Relative Error (%) 

(ΔVcrash – Δvtest)/ ΔVtest  

Impact Type 
No. of 

vehicles 
Mean 

Standard 
deviation 

Mean 
Standard 
deviation 

Front 91 -5 9 -9 17 

Car to car 22 +2 7 +5 13 

Rigid barrier 25 -10 11 -21 19 

Deformable 
barrier 

44 -5 7 -8 12 

      

Side 44 -2 3 -9 12 

Rigid barrier 5 -6 N/A -27 N/A 

Deformable 
barrier 

39 -1 2 -6 9 

      

Rear      

Rigid barrier 2 -4 N/A -19 N/A 

      

TOTAL 137 -4 8 -19 15 

 

 

Lenard et al. concluded that the default stiffness coefficients in CRASH3 are sufficiently 

well suited for modern European cars for statistical studies but make the point that for 

individual collisions custom stiffness coefficients may be desirable.  These results show 

that for frontal impacts CRASH appears to underestimate Δv for rigid and deformable 

barrier impacts but overestimate Δv in car to car impacts.  In side and rear impacts 

CRASH can underestimate Δv significantly.  They call for further research to collate 

vehicle crush data from crash tests. Insufficient detail is provided to further analyse 

their results. 
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5.3.2 US based studies 

The first comprehensive study into the accuracy of CRASH appears to be that 

performed by Smith and Noga [107] in 1982  This was later summarised the same year 

as an SAE paper by the same authors [108].  Staged collisions using 53 American 

vehicles and 29 using European vehicles were examined using the default coefficients 

in CRASH3.  They determined that for low changes in velocity in the range 10 – 15 

mph (16 – 24 kmh-1) the mean calculated value of Δv was accurate to ±17.8%.  For 

higher changes in velocity in the range 25 – 30 mph (40 – 48 kmh-1)  the mean 

calculated value of Δv was accurate to ±14%.  Both these figures are for a 95% level of 

confidence and weighted according to their assumed frequency of occurrence based 

on the US towaway accident population. 

The version of CRASH used by Smith and Noga did not have the facility to incorporate 

restitution effects and in [107] they note that this may have had an adverse effect on 

the results, particularly at lower speeds.  Smith and Noga also utilised the standard 

energy adjustment factor as described in Chapter 4.  They observed that although 

CRASH generally tended to underestimate the total Δv, for oblique side impacts 

CRASH overestimated Δv.  Smith and Noga attribute this to the adjustment factor. 

They found that in each of these cases the angle of incidence of the impulse to the 

original face of the vehicle was 45° or greater resulting in a large adjustment factor 

greater or equal to 2.  They suggest that the simple model describing the standard 

adjustment factor may not be appropriate to higher angles of incidence. 

Smith and Noga also investigated the probable limits on ranges for input 

(measurement) data.  The ranges on the input data were estimated by comparing the 

results obtained from 34 pairs of measurements.  One set of measurements were 

obtained by skilled team of investigators who attended the scene and the other set 

were obtained by a single person with limited training who measured the vehicles after 

they had been removed from the scene.  For this comparison the skilled 2-person team  

measurements were taken to be the „true‟ values and the lesser skilled single person‟s 

results were taken to be the „field‟ measurements.   

It should be noted that although this study appears somewhat crude, it is the only such 

study that appears to have been recorded.  On the basis of this investigation, Smith 

and Noga determined the confidence levels on individual measurements that could be 

expected.  Their results are shown in Table 5.2   
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Table 5.2: 95% confidence levels for measurements (Smith & Noga 1982) 

Measurement Mean error 
Standard 

deviation 

95% confidence 

limits 

Weight (lbs) 24 65 ±130 

C1 – C6 (inches) 0.3 1.5 ±3.0 

Offset D (inches) -0.1 1.8 ±3.6 

Damage length L (inches) -0.5 3.0 ±6.0 

PDOF (degrees) N/A N/A ±201 

 

1The PDOF measurements are based on 10° increments  

Smith and Noga‟s study also examined to some extent the theoretical accuracy of the 

CRASH model.  For this part they used a simplified version of the CRASH equation 

described in equation (2.24).  Excluding restitution, equation (2.24) can be written as 
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Assuming that the parameters in this equation are independent of each other it is 

possible to use standard error propagation theory to determine an approximation to  

likely error in the result.  A similar technique is utilised in the next section where it is 

discussed in more detail.  Smith and Noga made the further assumptions that six crush 

measurements were obtained in each case and that the standard energy adjustment 

factor was used.  With these assumptions they determined that with the 95% 

confidence limits shown in Table 5.2, the overall uncertainty in Δv for individual 

collisions resulting from measurement error was between 9 and 25%.  The greatest 

source of error was found to be in the estimation of the PDOF.  Uncertainty in this 

variable alone accounted for about 4 times as much error in the final result as the other 

factors.  They further calculated that a 10% uncertainty in the A and B stiffness 

coefficients produced errors of approximately 2 to 5% in Δv. 

Woolley et al. [132] also analysed data presented by Smith and Noga using the 

CRASH3 coefficients.  They point out that individual Δv values could be in error by as 

much as ±40%.  As a result of this and an incorrect analysis of the theory underpinning 

CRASH they concluded that CRASH does not produce accurate results and instead 

proposed the IMPAC model [130].  (Note: The IMPAC model is essentially a 
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conservation of momentum model, similar to those described herein but with the 

assumption of a common post-impact velocity i.e. en = et = 0) 

5.3.3 RICSAC tests 

In this section the data from the well known RICSAC (Research Input for Computer 

Simulation of Automobile Collisions) tests series is discussed.  The data has been used 

for several comparative studies.  More pertinently for this research the RICSAC tests 

include crush measurement data for each vehicle.  The RICSAC series comprises 

twelve tests, each involving a collision between full size US vehicles travelling at known 

speeds.  The data is summarised by Jones and Baum [51] from several volumes of a 

US DOT report by Shoemaker [96], [97] and Jones and Baum [52].   

Data from the tests is spread over a number of publications and there are 

discrepancies between the data reported in different sources, e.g. Smith and Noga 

[109] and Brach [6].  In addition, the actual changes in velocity (Δv) as initially reported 

were found to be incorrect due to a failure to adjust the velocities to account for 

accelerometer positions located remotely to the centre of mass.  This has provoked 

considerable discussion in the literature.  These errors have since been corrected 

independently by Brach and Smith [12] and McHenry and McHenry [69] with slightly 

different results as shown in Table 5.3.   

Table 5.3: Comparison between uncorrected and corrected Δv (speeds in ms-1) 

RICSAC 

test No. 

Untransformed [51] Brach & Smith [12] McHenry & McHenry [69] 

V1 V2 V1 V2 V1 V2 

1 5.45 6.93 5.27 6.62 5.50 7.55 

3 4.25 7.06 4.20 6.88 4.25 7.06 

4 8.36 10.01 8.31 9.66 8.36 9.92 

5 7.29 11.22 7.06 11.13 7.24 11.40 

6 4.02 5.36 4.11 6.53 4.07 6.39 

7 5.36 7.38 5.36 8.81 5.36 8.85 

8 6.84 4.83 6.97 4.78 6.66 4.92 

9 9.57 3.98 8.72 3.84 8.90 3.67 

10 15.69 6.30 12.83 5.86 15.20 5.59 

11 10.73 7.02 11.18 7.20 10.95 7.02 

12 17.92 11.80 18.77 11.26 18.24 11.93 
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Data from test 2 is omitted as there was a failure of the accelerometers during this test 

and no data was recorded.  The majority of the transformed changes in velocity are 

within 5% of the untransformed values, although there are some exceptions, such as  

in tests 6, 9 and 10.  The differences between the two sets of corrections indicates that 

the RICSAC data requires some interpretation to obtain usable results. 

The Δv values for a damage-only analysis of the RICSAC series of tests have been 

recalculated for this research using the RICSAC sample data provided with the 

EDCRASH [26] implementation of the CRASH algorithm.  This is the same data set as 

used by Day and Hargens [22] and [25] in their validation of the EDCRASH computer 

program.  The measurements used and other source data corresponds well with the 

original measurements recorded by Jones and Baum [51].  The crush analysis results 

obtained for the damage-only analyses are shown in Appendix E with the source data 

shown in Appendix D.  The results in Appendix E were generated using AiDamage 

[74].  These results have been compared with results from Brach‟s model as shown in  

Table 5.4 and are summarised graphically in Figure 5.1 below.  In this comparison the 

measured Δv and Brach Δv PIM results are both taken from Brach and Smith [12] 

using corrected accelerometer data.  

Table 5.4: Comparative Δv results PIM and raw CRASH (Speeds in ms-1) 

RICSAC 

test No. 

Corrected Speeds 

Brach & Smith [12] 
PIM Results [12] Raw CRASH 

V1 V2 V1 V2 V1 V2 

1 5.27 6.62 4.61 6.90 6.20 9.30 

3 4.20 6.88 3.50 5.54 2.79 4.43 

4 8.31 9.66 6.45 10.06 7.05 11.00 

5 7.06 11.13 6.00 10.90 6.89 12.54 

6 4.11 6.53 4.62 7.57 6.97 11.44 

7 5.36 8.81 6.76 9.58 8.84 19.25 

8 6.97 4.78 5.23 4.97 4.84 4.60 

9 8.72 3.84 6.85 3.15 6.32 2.91 

10 12.83 5.86 11.02 5.39 7.08 3.46 

11 11.18 7.20 10.91 6.84 9.33 5.85 

12 18.77 11.26 16.17 11.21 11.74 8.15 
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Figure 5.1: Graph to show comparative Δv results (Speeds in ms-1) 

 

 

The results from this comparison show a much wider spread of results for the CRASH 

algorithm than for Brach‟s model.  Brach‟s model shows a mean underestimate from 

the actual change in velocity of 5% with a standard deviation of 14% whereas CRASH 

overestimates with a mean error of 2% with a large standard deviation of 45%.   

It is helpful at this stage to discuss some of the other comparisons which have been 

made with CRASH.  Day and Hargens [25] also produced a table of results for their 

validation of their EDCRASH program.  Their results show some variation in the 

calculated values of Δv to those calculated here and shown in Figure 5.1, particularly in 

tests 6, 9, 10 and 12 where differences of over 2 ms-1 are apparent.  Since the vehicle 

data, crush data and stiffness coefficients used by Day and Hargens are identical to 

those used in this analysis, this is somewhat surprising.  Day and Hargens perform two 

series of analyses, one without trajectory simulations and the other with such 

simulations. (Note: The trajectory simulation model used by some implementations of 

CRASH is an analysis of the post-impact motion of the vehicle to derive the post-

impact velocities of each vehicle.)   

Although it is unclear from their text, it appears that their quoted results are not based 

on the calculation of Δv from crush damage analyses, but instead are based upon the 

determination of pre-impact velocity and Δv using the conservation of linear momentum 

as outlined by equations (2.1) and (2.2). Day and Hargens do not appear to record the 

„Damage Only‟ Δv results of their EDCRASH program runs.  As such, the EDCRASH 
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validation performed by Day and Hargens can only be considered as a validation of the 

momentum only and trajectory simulation models contained within EDCRASH.  The 

EDCRASH study does not validate the damage part of the CRASH algorithm. 

Brach also performed earlier analyses of the RICSAC tests in 1991 [8] and 1998 [10] 

which show different results for his planar impact mechanics model.  The reasons for 

the differences between each of Brach‟s results appear to be due the optimisation 

process used on each occasion and that early versions of the PIM model used a 

slightly different formulation.  In each it appears that the same initial velocities were 

used and the e and µ parameters adjusted to obtain a close match to some desired 

output.  For example in the 1991 series, Brach optimised the tests to minimise the 

differences from the calculations to the post-impact velocities.  In the 1998 series, the 

optimisation process used (if any) is not specified.  In the 2002 series, Brach and Smith 

state that the results were optimised to match a “weighted combination of DeltaV and 

energy loss”.  They further state that that the best fit with this optimisation in all cases 

was for the common velocity conditions i.e. e = 0 and µ = µ0  A comparison between 

the three analyses of the RICSAC data performed by Brach is shown in Table 5.5 and 

summarised graphically in Figure 5.2 

 

Table 5.5: Comparison between Brach's RICSAC results (Speeds in ms-1) 

RICSAC 

test No. 

1991 Results [8] 1998 Results [10] 2002 Results [12] 

V1 V2 V1 V2 V1 V2 

1 4.91 7.38 4.60 6.92 4.61 6.90 

3 4.30 6.83 4.27 6.77 3.50 5.54 

4 6.83 10.64 6.74 10.52 6.45 10.06 

5 6.25 11.37 6.22 11.49 6.00 10.90 

6 4.48 7.35 4.63 7.56 4.62 7.57 

7 6.22 8.81 6.77 9.57 6.76 9.58 

8 5.88 5.61 5.58 5.30 5.23 4.97 

9 9.75 4.48 8.78 4.05 6.85 3.15 

10 15.73 7.68 13.96 6.83 11.02 5.39 

11 11.16 6.98 10.88 6.83 10.91 6.84 

12 18.07 12.62 17.77 12.31 16.17 11.21 
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Figure 5.2: Graphical comparison of Brach's RICSAC results (Speeds in ms-1) 

 

 

 

Although differences exist between Brach‟s three analyses, the difference between his 

calculated results and those measured from for the accelerometers are similar.  There 

remain discrepancies with the CRASH results which further explanation and this forms 

the basis of the next section.   

 

5.3.4 Errors in crush data measurements 

Potential problems with the crush measurements in the RICSAC data are discussed in 

this section together with methods which can be used to compensate for such errors.  

A study of the photographs of the damaged vehicles in the RICSAC tests indicates that 

vehicle crush measurements were not necessarily obtained at the correct height. For 

example, side impacts crush measurements appear in some instances to have been 

taken at the height of maximum intrusion rather than along sill level as described in 

Chapter 3.  This is confirmed by Smith and Noga [109] who state that damage profiles 

were measured at the level of maximum intrusion.  This has resulted in a significant 

overestimate to the damage sustained by some vehicles and a consequent increase in 

the calculated crush energy absorbed by those vehicles.  In other collisions the 

reported damage length L or offset D are clearly incorrect when compared with 

photographs.   
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Also, and as identified by Smith and Noga [108], the estimation of the PDOF values 

applicable to each vehicle are somewhat subjective and prone to error.  The CRASH 

results shown in Figure 5.1 and Appendix D are based on the original PDOF estimates.  

In general, by Newton‟s Third Law, the force acting on one vehicle should be equal in 

magnitude to the force acting on the other vehicle.  The force required to cause 

damage to each vehicle can be calculated and a comparison between those forces 

used to estimate the validity of the analysis.  Any errors in the measurements to one or 

other vehicle tend to be manifested in an obvious difference between the forces 

calculated as causing the damage to each vehicle.  Table 5.6  shows a summary of the 

force differences determined for each of the RICSAC test collisions and the impact 

type.  

Table 5.6: RICSAC tests comparison of force difference and impact type 

Test Force Difference (%) Impact Type 

1 363 60° front to side 

2 469 60° front to side 

3 47 10° front to rear 

4 99 10° front to rear 

5 385 10° front to rear 

6 577 60° front to side 

7 608 60° front to side 

8 14 90° front to side 

9 80 90° front to side 

10 66 90° front to side 

11 4 10° front to front 

12 29 10° front to front 

 

 

Tests 1, 5, 6, and 7 reveal force differences well in excess of 100% and no systematic 

relationship is apparent between the scale of error and type of collision.  Comparison 

with the photographs indicates that some adjustment to the crush measurements is 

desirable.  The author has examined and measured scores of damaged vehicles.  

Based on this experience, photographs and the measurements an estimate of the likely 

crush at the load bearing level have been made for each vehicle.  The adjustments 

made vary dependent on the particular damage to each vehicle.  Although such a 

process is somewhat rough and ready the resulting measurements provide a better 
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approximation of the damage profiles to the stiff parts of the vehicles.  Suitable 

adjustments are detailed in Table 5.7    

 

Table 5.7: RICSAC tests measurement adjustments 

Test Damage Adjustments 

1 v2 subtract 10 cm from each C1 to C6  

2 v2 subtract 15 cm from each C1 to C6 

3 v1 add 5 cm to each C1 to C6.  Set v2 offset to -50 cm 

4 v2 subtract 15 cm from each C1 to C6 

5 v2 subtract 20 cm from each C1 to C6 

6 v2 subtract 15 cm from each C1 to C6 

7 v2 subtract 20 cm from each C1 to C6 

8 No adjustment 

9 v2 subtract 10 cm from each C1 to C6 

10 v2 add 10 cm to each C1 to C6 

11 No adjustment 

12 Expand damage length L for both vehicles to 140 cm 

 

It is possible to refine the PDOF values used by replacing the estimated values with 

values calculated using Brach‟s or Ishikawa‟s models and the actual speeds of the 

vehicles at impact.  Adjusting the crush measurement profiles as indicated in Table 5.7 

also has a secondary effect.  As discussed in Chapter 3, McHenry [65] indicates that 

the position of the point of application of the impulse can be assumed to be the centre 

of mass of the damaged area, the damage centroid.  Adjusting the damage profile 

alters the calculated position of the damage centroid.  Assuming that the calculated 

damage centroid is the point of application of the impulse, and further assuming a 

common post-impact velocity at the damage centroids, the refined PDOF values 

obtained from the momentum only models are as shown in Table 5.8     
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Table 5.8: Adjusted PDOF values (degrees) 

RICSAC 

test No. 

Original values Adjusted values Difference 

V1 V2 V1 V2 V1 V2 

1 -30 30 -11.3 48.7 -18.7 -18.7 

2 -30 30 -11.7 48.3 -18.3 -18.3 

3 0 170 14.1 -175.9 -14.1 -14.1 

4 -0.5 170.5 11.1 -178.9 -11.6 -10.6 

5 0 170 11.6 -178.4 -11.6 -11.6 

6 -30 30 -11 49 -19 -19 

7 -30 30 -12.7 47.3 -17.3 -17.3 

8 -30 60 -20.5 69.5 -9.5 -9.5 

9 -30 60 -21.8 68.2 -8.2 -8.2 

10 -65 25 -25.3 64.7 -39.7 -39.7 

11 4.5 -4.5 -2.9 -11.9 7.4 7.4 

12 4.5 -4.5 1 -8 3.5 3.5 

 

 

Table 5.8 shows that the visual estimates of the PDOF are considerably different from 

the PDOF values required to cause the desired change in velocity.  Such a difference 

has been noted previously by many commentators, e.g. Smith and Noga [108] and 

Brach [12].  (Note: In test 10 it appears that the initial estimates of -65 and 25° may 

have been transposed.  However for consistency the data is retained as recorded.) 

The amended data is used in subsequent sections.   

 

5.3.5 Post-impact directions of travel 

Interestingly, using the actual pre-impact speeds, the momentum only models of Brach 

and Ishikawa predict post-impact directions of travel which are close to the actual post-

impact directions of travel recorded by Jones and Baum [51]  The values and 

differences between the post-impact directions of travel measured from Jones and 

Baum and those calculated using Brach‟s PIM are shown in Table 5.9   
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Table 5.9: Post-impact directions of travel (degrees) 

RICSAC 

test No. 

Actual Values PIM Values Difference 

V1 V2 V1 V2 V1 V2 

1 17 67 14 65 3 2 

2 19 64 14 64 5 0 

3 2 10 8 14 -6 -4 

4 4 9 6 11 -2 -2 

5 0 4 5 12 -5 -8 

6 8 61 11 64 -3 -3 

7 11 54 10 57 1 -3 

8 50 56 25 58 25 -2 

9 59 65 29 76 30 -11 

10 65 66 33 72 32 -6 

11 6 26 18 39 -12 -13 

12 7 32 7 39 0 -7 

 

 

The results for collision 11 appear to be anomalous, the reasons for which have not 

been ascertained.  However the results in Table 5.9 for the three 90° collisions 

(numbers 8, 9 and 10) do not match the post-impact trajectories as precisely as the 

other collisions. This is particularly pronounced as far as the less massive vehicle 

(vehicle 1) is concerned in each collision.   

In these particular collisions the recorded post impact directions of travel show that the 

centres of mass of each vehicle moved approximately parallel to each other post-

impact.  In these calculated scenarios, assuming a common post-impact velocity at the 

damage centroids predicts that the vehicles „pass through‟ each other.  This is a 

physically impossible result.  Allowing restitution along the line of action of the impulse, 

but maintaining a common tangential velocity produces calculated results which match 

the recorded output scenarios.   

 

This is illustrated in Figure 5.3 where the predicted motion of the vehicles in RICSAC 9 

is shown with ep = 0 and ep = 0.3  
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Figure 5.3: Motion of Centres of Mass with varying coefficients (RICSAC 9) 

 

 

With the adjustments to the coefficient of restitution for collisions 8, 9 and 10, the post-

impact directions of travel calculated using PIM are shown in Table 5.10  

 

Table 5.10: Post impact directions of travel with e=0.3 (degrees) 

RICSAC 

test No. 

Actual Values PIM Values Difference 

V1 V2 V1 V2 V1 V2 

8 50 56 41 49 9 7 

9 59 65 45 69 14 -4 

10 65 66 54 66 2 0 

 

 

The correspondence between the calculated post-impact directions of travel using 

Brach‟s PIM and the actual directions suggests that the momentum based models of 

Brach and Ishikawa do predict accurately the post-impact directions of travel provided 

suitable estimates can be made for the pre-impact speeds.  This important finding that 

the predicted post-impact directions of travel match very well with the actual post-

impact directions of travel is utilised in Chapter 7 to provide a way of refining initial 

estimates of the PDOF to generate more accurate and reliable results. 

 

ep = 0.0 ep = 0.3 
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5.3.6 RICSAC analysis using adjusted data 

The adjustments suggested in Table 5.7 and Table 5.8  have been included in a 

second set of AiDamage analyses.  These results are shown in Appendix F and 

summarised in Figure 5.4  below 

Figure 5.4: Comparison of original (raw) and adjusted CRASH results 

 

 

Using the adjusted measurements and PDOF values these tests now show that 

CRASH underestimates Δv by a mean of 2% with a standard deviation of about 22%.  

An analysis of the error associated with each test is shown in Figure 5.5  

Figure 5.5: Errors per individual test 
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Although the majority of results show a range of differences less than about ±30%, test 

7 produces an anomalous result.  In this calculation the change in velocity for vehicle 2 

is calculated to be nearly 50% greater than the change in velocity determined from the 

accelerometers.  A similar overestimate is also noted using the momentum based 

models of Brach and Ishikawa.  This suggests that some other factor is responsible.  It 

has not been possible to definitively identify this factor.  However in their DOT report 

Jones and Baum [52] also report an overestimated Δv for vehicle 2 in test 7 (35.5 

mph).  They suggest that this may be due to the fact that in this collision there was 

significant rotation of vehicle 2 during the impact itself of approximately 22° and that 

this is not modelled by CRASH. Excluding test 7 from the analysis suggests that 

damage only algorithm of CRASH underestimates the true Δv by 4% with a standard 

deviation of 18%.  Although the variation in the results remains relatively large, 

comparing these adjusted results with the original raw data results tends to indicate 

that improvements to the measuring process and in particular adjusting the PDOF to 

match reality do produce more accurate results.   

 

5.4 Theoretical Accuracy of CRASH 

With the exception of the work performed by Smith and Noga [107] little work has been 

performed to determine the theoretical accuracy of CRASH.  As discussed previously 

Smith and Noga utilised a simplified version of the CRASH equation, assumed a fixed 

number of crush measurements and adopted the standard energy adjustment factor 

proposed by McHenry [65].  There does not appear to be however a rigorous study to 

quantify how potential error in any one of the input parameters to the CRASH equation 

is likely to affect the overall result.  Singh [100] determined the theoretical accuracy of 

CRASH stiffness coefficients assuming normally distributed input parameters.  This 

approach of assuming normally distributed input parameters is also adopted here to 

quantify how the errors in the input data affect the overall result.  This approach was 

adopted so that a confidence interval for the final result could be computed and 

compared with Monte Carlo simulations which form the subject of the next Chapter. 

Repeated measurements of a variable generally produce a result which has a normal 

(Gaussian) distribution and can be written as x = N(µ, 2) where µ is the mean and  is 

the standard deviation so that 2 represents the variance.  A function f comprising a 

number of such variables, x1 … xn can be written 
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1 2f( , , , )ny x x x . (5.2) 

Error propagation theory shows that the variance in the result y
2 can then be 

approximated by 
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The second term in equation (5.3) represents the covariance between the variables xi 

and xj.  If the variables are independent and therefore uncorrelated, then ij is zero so 

that the second term in equation (5.3) vanishes.  As a result the variance in a function f 

for a number of independent variables is approximately given by 
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Similarly the absolute uncertainty Δy can be expressed as 
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As demonstrated earlier the CRASH algorithm can be considered as two separate 

parts, one to determine the crush energy values and the second to determine the 

change in velocity.  As such the variance may be determined for each calculation to 

determine the crush energy which may then be used in the second part to determine 

the overall variance in Δv.  Singh [99] shows that the work done in causing crush for an 

arbitrary number of crush zones n can be determined from equation   
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By applying equation (5.4) the variance in equation (5.6) can then be written as 

22 2 2 2

2 2 2 2 2 2

E A B L

E E E E E

A B L
      

 

            
            

            
 (5.8) 

where the partial derivatives are defined in Appendix G and the variance in ε and κ are 

defined as 
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 (5.9) 

Note that the partial derivatives were evaluated symbolically using Mathcad Version 13. 

The input data to these and other equations is frequently quoted in the form x ± δx 

where the δx term represents the confidence limit applicable to that parameter (usually 

95%).  Assuming a normal distribution for the data and using a two-tailed hypothesis 

test corresponding to 95% (i.e. α = 0.025) the standard deviation  can be expressed 

as 

.
1.96

x
   (5.10) 

 

5.4.1 Example: RICSAC 8 

Applying equation (5.10) to the data allows the variance to be determined for each 

parameter and thereby permits the calculation of the total variance or standard 

deviation.  This process is illustrated using the data from RICSAC tests [51] as shown 

in Appendix D together with the 95% measurement confidence limits suggested by 

Smith and Noga [108] in Table 5.2   Confidence limits are not available for the default 

CRASH3 stiffness coefficients so a nominal value of ±10% was used which matches 

the confidence interval used by Smith and Noga.  This may well underestimate the true 

confidence interval however as suggested by the work of Siddall and Day [98] where 

their confidence limits on updated stiffness coefficients are generally higher.  The effect 

of using alternative confidence limits is discussed in later sections.  RICSAC test 8 is 

used for this example as it was one of the few tests where the measurements did not 
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require adjustment.  From this data the crush energy and confidence limits for each 

vehicle were calculated using Mathcad.  The model and results are shown in Appendix 

H (Part I) and show that the 95% confidence limits applicable to this calculation is 

about ±23%.  The contribution to the confidence limits by each of the parameters in 

equation (5.6) is shown in Table 5.11 

Table 5.11: Contribution of individual energy parameters to overall confidence 

limit 

 Variable 
Standard Deviation 

Fraction of overall 

result (%) 

Fraction of total error 

(%) 

V1 V2 V1 V2 V1 V2 

A (N/cm) 31.8  12.8 15.4 5.86 42.91 6.58 

B (N/cm2) 1.19 1.78 5.4 4.14 5.27 3.29 

L (cm) 7.78 7.78 8.22 7.10 12.24 9.67 

η (cm) 16.5 16.5 14.3 8.2 37.12 12.89 

κ (cm2) 342 816 3.69 18.8 2.47 67.57 

Total (J) 3130 2470 23.5 22.8 100 100 

 

These results demonstrate that the overall uncertainty in the determination of the crush 

energy cannot be ascribed to one particular input parameter.  For vehicle one, the 

value of A and ε are dominant but for vehicle 2, the dominant factor is the uncertainty 

in the factor κ.  This suggests that an alternative approach is required to determine 

what factors are dominant in calculating crush energy.  This is discussed in more detail 

below.   

Once the variance in crush energy has been determined however, this can be 

multiplied by the energy adjustment factor to calculate the corrected crush energy.  As 

explained in Chapter 4 a number of energy adjustment factors have been proposed so 

each will have a different error term.  For consistency with existing work the standard 

energy adjustment factor is used here  

2(1 tan )mE E    (5.11) 

where E is the corrected energy, Em is the energy calculated from the measured data 

and α is the angle of impulse with the original face of the vehicle.  The result of  
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equation (5.11) can then be used in equation (2.24) to calculate Δv.  Equation (2.24) is 

repeated here for convenience 

2 1 2
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where m1 and m2 are the masses for each vehicle, E1 and E2 are the corrected crush 

energy values and δ1 and δ2 are defined as 

2 2

1 2
1 22 2

1 2

1 ,       1
h h

k k
      (5.13) 

where k1 and k2 are the radii of gyration and h1 and h2 are the lengths of the moment 

arms about the centres of mass.  The lengths of the moment arms can be found from 

the expression 

_ _

( )sin cosh x x y     (5.14) 

where ζ is the PDOF, x is the displacement of the centre of mass of the vehicle to the 

original surface and  ̅ and  ̅ are the displacements of the point of application of the 

impulse perpendicular and parallel to the original surface. McHenry‟s method [65] for 

determining the location of the point of application of the impulse, by assuming this 

point is the damage centroid, depends on the crush measurements and offset. It 

follows therefore that h will be affected by any error in these measurements as well as 

any error in the PDOF.  As an alternative to equation (5.14) the position of the point of 

application of the impulse can be defined using polar coordinates, d and  about the 

centre of mass in a manner similar to that described by Brach [11] so that 

sin( )h d     (5.15) 

Using polar coordinates is an effective way defining the position of the point of 

application and is used here in preference to Cartesian coordinates to allow for greater 

consistency and avoid potential problems when different surfaces of the vehicle are 

considered.  In any event the fact that any error in the PDOF affects h and E means 

that the δ and E parameters in equation (5.12) are likely to be correlated to some 

extent.  Since this cannot easily be determined analytically, a detailed discussion on 

this aspect is deferred until the next Chapter.  Assuming however that this correlation 
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can be considered to be negligible, the variance of equation (5.11) can be calculated in 

a similar manner as previously.  The partial derivatives required for this series of 

calculations are defined in Appendix G. 

No data appears to be available on which to base suitable error bounds for the 

parameters k, d or .  The 95% confidence limits for the radius of gyration is assumed 

here therefore to be 0.1 m.  The length of the moment arm (h) is determined by the 

PDOF (ζ) and the position of the point of application of the impulse which is itself 

defined through the parameters d and .  It is supposed here that the error in h is 

constrained to lie within the same bounds as crush measurements, i.e. ± 3” (7.62 cm).  

Permitting a simple bound on the angular value of  has the undesirable effect that the 

lateral error in h is then also dependent upon the length of d.  To negate this effect, the 

model here constrains variation in the angle  so that the lateral variation is the same 

as the variation in d. 

The model and results for RICSAC test 8 are shown in the Mathcad implementation of 

the model.  The full listing is in Appendix H (Part II). The results show that the 95% 

confidence limits applicable to the calculation of Δv when using the raw data reported 

by Jones and Baum [51] is about ±18%.  The contribution to the confidence limits by 

each of the parameters in equation (5.12) is shown in Table 5.12   

Table 5.12: Contribution of individual Δv parameters to overall confidence limit 

Variable 
Standard Deviation Fraction of result (%) 

Fraction of total error 

(%) 

V1 V2 V1 V2 V1 V2 

m1 25.5 25.5 1.69 2.46 0.90 1.86 

m2 25.5 25.5 0.43 2.31 0.06 1.68 

E1 4665 - 7.25 - 16.68 - 

E2 3898 - 6.06 - 11.65 - 

δ1 0.402 - 14.9 - 70.20 - 

δ2 0.036 - 1.28 - 0.52 - 

ep 0.00 - 0.00 - 0.00 - 

Δv1 - 0.438 - 17.5 - 96.46 

Total 0.438 0.424 17.7 18.1 100 100 
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The results for this one test shows that the largest contributor to the overall error by far 

is the error in δ1.  For this collision δ1 is 1.67 with a 95% confidence limit of ±47% which 

is due almost entirely to a large uncertainty in h1.  In turn the uncertainty in h1 can be 

tracked back to the uncertainty in PDOF1.  Reducing the uncertainty in the PDOF 

parameters by setting the confidence limit to ±10° reduces the overall uncertainty in Δv 

to around ±12% and eliminating it entirely reduces the overall uncertainty to around 

±9%.  It appears therefore that an accurate estimate of PDOF is essential if a realistic 

result is to be obtained.   

5.4.2 Application to RICSAC tests 

As discussed earlier, a more accurate estimate of the PDOF has been determined for 

the RICSAC collisions along with more realistic measurements.  The analytical model 

developed here for RICSAC 8 and shown in Appendix H has been applied to each of 

the collisions and including restitution where necessary, an estimate of the theoretical 

accuracy has been be obtained.  A comparison showing the calculated difference in 

change in velocity (from Brach [12]) and theoretical limits of accuracy for the RICSAC 

test series are shown in Figure 5.6  

Figure 5.6: RICSAC - Comparison between calculated and theoretical accuracy 

 

The mean 95% confidence limit using ±20° in the PDOF for each vehicle was found to 

be ±18%.  Reducing the variability in the PDOF to ±10° reduced the mean confidence 

limit to ±12.3% suggesting that if achievable, increased accuracy in estimating the 

PDOF should produce significantly more accurate results.  In several of the tests 
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however it is noted that the calculated error is somewhat greater than the theoretical 

error.  This indicates that either the theoretical error is not taking some major factor into 

account, the model itself is flawed, or that the source data itself contains one or more 

errors.  As previously indicated the measurement data is not ideal and examination of 

the recorded changes in velocity indicate that these were themselves calculated from 

potentially flawed sources.  Although a record of the accelerometer data is present in 

the RICSAC source data compiled by Shoemaker [96] and [97] no obvious reference to 

actual post-impact speeds appears to have been recorded from which a change in 

velocity could be calculated. 

5.4.3 Application to Lotus test series 

Alternative series of tests do exist from which additional comparisons can be made.  

For example the Lotus series of tests performed by ITAI [45] were designed so that 

post-impact data was available from which post-impact speeds could be determined.   

A similar comparison as above using uncorrected data from the Lotus tests and 

changes in velocity calculated using post-impact data has also been performed.  These 

results are shown in Figure 5.7  

Figure 5.7: Lotus - Comparison between calculated and theoretical accuracy 
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mean calculated error compared with the actual changes in speed was +10% with a 

standard deviation of 3%. The mean 95% confidence limit using ±20° in the PDOF for 

each vehicle was found to be ±12.4%.   

5.5 Contribution to uncertainty by individual input parameters 

A more useful comparison of the effect of uncertainty in individual input parameters can 

be obtained by considering the overall confidence limits to Δv achieved using a range 

of uncertainty in individual input parameters.  This allows a direct comparison to be 

made with Smith and Noga‟s [108] results.  The CRASH algorithm as a whole can be 

considered to be a sequence of individual components each taking various input 

parameters as shown in Figure 5.8  

Figure 5.8: Relationship between input parameters 
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The parameters shown in blue in Figure 5.8 are measured or otherwise determined by 

the user.  Other parameters are interim values dependent upon those inputs. Each of 

the input parameters will have an uncertainty associated with it.  By eliminating the 

uncertainty in all inputs except for the parameter under investigation the effect of 

uncertainty in each input parameter can be investigated.  Suitable ranges for each of 

the parameters have been designed as shown in Table 5.13.  These are designed to 

encompass the uncertainties suggested by Smith and Noga [108] as shown in Table 

5.2 and also to examine the relationship between uncertainty in each parameter and 

the overall uncertainty in the result. 

 

Table 5.13: Uncertainty in individual parameters 

Parameter Description Uncertainty used 

δC Uncertainty in crush measurements  0.01, 0.05, 0.1 m 

δL Uncertainty in damage length 0.01, 0.05, 0.1, 0.15, 0.2 m 

δm Uncertainty in mass 10, 25, 50 100 kg 

δPDOF Uncertainty in PDOF 1, 5, 10, 15, 20, 25° 

δd Uncertainty in position of point of application 0.01, 0.05, 0.1, 0.2 m 

δk Uncertainty in radius of gyration 0.01, 0.05, 0.1, 0.2 m 

δA Uncertainty in A stiffness coefficient  5, 10, 15, 20% 

δB Uncertainty in B stiffness coefficient 5, 10, 15, 20% 

     

 

5.5.1 Application to RICSAC tests 

The results from this analysis as applied to the RICSAC series of crash tests are 

shown in Appendix I.  The overall uncertainty shown in Table I.1 is calculated using the 

95% confidence levels suggested by Smith and Noga which allows a direct comparison 

to be made with their work.  Since no uncertainty was ascribed by Smith and Noga to 

the position of the point of application (d), a 95% confidence level identical to the crush 

measurement uncertainty was used, i.e. ±3” (0.0762 m).  Siddall and Day [98] as part 

of their update to the vehicle stiffness coefficients shows that the radius of gyration (k) 

varies from about 1.25 m for small cars up to about 1.55 m for large cars.  The range of 

probable values for k is therefore likely to be relatively small.  Thus a 95% confidence 
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level of 0.1 m was assigned to the uncertainty in the radii of gyration (k) 

measurements.   

The tables in Appendix I show results show a linear response with respect to each of 

the parameters under investigation.  For example multiplying the uncertainty in any one 

parameter by a factor of two, doubles the resultant contribution to uncertainty by that 

parameter.  Since the uncertainty in each factor is determined from the product of the 

appropriate partial derivative and associated uncertainty, such a linear response may 

be expected for all collisions.  The total uncertainty can then be found from application 

of equation (5.5) as the sum of the squares of the individual uncertainties.  It is 

important to note however that in any particular collision the uncertainty in a parameter 

may be identical to the uncertainty in another collision, but the numerical result of the 

associated partial derivative is unlikely to be the same.  This leads to different results 

for different collision scenarios. 

The results have been grouped by impact configuration which highlights some obvious 

trends.  Figure 5.9 shows the overall uncertainty grouped by impact configuration.  It is 

clear from Figure 5.9 that the front to front and front to rear impact configurations 

appear to be inherently more accurate than the front to side impact configurations with 

the 60° front to side impacts predicting overall uncertainty of around 27%  

 

Figure 5.9: Overall uncertainty grouped by impact type 

 

0%

5%

10%

15%

20%

25%

30%

60° FTS 90° FTS 10° FTF 10° FTR

O
ve

ra
ll 

u
n

ce
rt

ai
n

ty
 

Impact Type 



5. Accuracy of the CRASH Model  Jon Neades 

100 

An analysis of the individual contributions made by each of the input parameters shows 

the main sources of uncertainty in the overall result.   An analysis of the relative 

contribution made by each of the input parameters grouped by impact type reveals the 

results shown in Figure 5.10  

    

Figure 5.10: Percentage contribution to uncertainty grouped by impact type 
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were relatively small.  Similarly a fixed uncertainty of 0.1524 m (6”) in damage length 

becomes more significant for shorter damage lengths. 

 

5.5.2 Analysis of effect of uncertainty in estimate of PDOF 

When grouped by impact configuration, it can be seen that the uncertainty in the PDOF 

mirrors the overall uncertainty for that configuration which is itself indicative of the 

dominant role played by the uncertainty in the PDOF.  Figure 5.11 shows the 

percentage contribution to uncertainty of the PDOF measurement compared with the 

overall uncertainty for each of the RICSAC tests.  As can be seen, in the three 60° front 

to side impacts (tests 1, 6 and 7) the percentage contribution of the uncertainty in the 

PDOF measurement approaches 90%.  For the front to front (tests 11 and 12) and front 

to rear (tests 2, 3 and 5) collisions the contribution of the PDOF uncertainty is 

significantly lower.   

 

Figure 5.11: Relative contribution of uncertainty in PDOF to overall uncertainty 
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perpendicular to the vehicle surface.  Thus any variation in the angle of incidence  will 

produce relatively small changes to the adjustment factor.  In the 60° front to side 

impacts the nominal angle of incidence is around 40° to 50° for one of the vehicles in 

each of these collisions.  In such cases a variation in PDOF of ±20° therefore produces 

a possible range of adjustment factors from around 1.1 to 8.5.  Applying an upper 

bound on this factor of 2 was suggested by McHenry [65] to eliminate excessive 

adjustment factors.  Such a modification is generally utilised in practical applications of 

the CRASH algorithm and thereby reduces the overall uncertainty.  

In the analysis presented in this Chapter the error term associated with the adjustment 

factor is determined from the partial differentiation of the adjustment factor with respect 

to α as shown in Appendix G and reproduced below 

2 22sec tan 2 tan (1 tan ).
E

   



  


 (5.16) 

Equation (5.4) can be applied to the result of equation (5.16) to determine the variance 

and standard deviation in the adjustment factor.  It is noted that the result of equation 

(5.16) will be zero for a nominal angle of incidence of zero indicating that at such 

angles the standard deviation in the adjustment factor is also zero.  However at larger 

angles of incidence the standard deviation will become progressively larger as it 

depends in part on the term tan(α) which increases with increasing angle.  At larger 

nominal angles the result of equation (5.16) is therefore larger producing a larger 

variance in the overall result. It is possible to mitigate this effect somewhat by 

constraining the adjustment factor to a maximum value of 2.  This requires some 

modification to the Mathcad implementation of the model shown in Appendix H.  This 

can be achieved by conditionally replacing the standard deviation determined from 

equation (5.16) and (5.4) with a value determined from 

2 22 (1 tan ) 1 tan

1.96 1.96
CF

 


  
  . (5.17) 

This modification is necessary only where the standard deviation is such that the 95% 

confidence limits applied to the nominal value exceed 2 as is the case in the 60° front 

to side impacts.  Applying this modification produces results shown in tables I.11 and 

I.12 in Appendix I and reduces the overall uncertainty in the 60° front to side impacts to 

around 15%.  The remaining RICSAC tests are unaffected by this modification. A 
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comparison between the original contribution to uncertainty by variation in the PDOF 

and the effect of reducing the variability in the adjustment factor to zero is shown in 

Figure 5.12  

 

Figure 5.12: Effect of eliminating energy adjustment  
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models generated post-impact directions of travel which matched the empirical results.  

As a consequence the derived PDOF values were considerably more accurate than 

initial visual estimates. This suggests that the reverse situation is also likely to be valid; 

if the post-impact directions of travel can be ascertained, then it should be possible to 

generate more realistic estimates for the PDOF.  Such an approach is developed in 

Chapter 7.    

 

5.6 Summary 

In this Chapter several empirical studies were examined and these appear to show that 

CRASH has the potential at least to produce changes in velocity results to within about 

15% of the true change in velocity.  The well known RICSAC tests were examined in 

detail to determine whether the claimed accuracy could be replicated using a known 

data set.  Several problems with the RICSAC data were encountered and only partially 

resolved.  Although the mean results did show an acceptable level of accuracy 

individual test collisions produced results which were not as accurate.  Raw data from 

another series of tests was also examined which appear to show a greater level of 

accuracy.   

The theoretical accuracy expected from variation in the empirical measurements was 

derived and examined.  As found by Smith and Noga [107] the largest individual 

contribution to the overall uncertainty was the estimation of the PDOF parameter for 

each vehicle.     

In the next Chapter, the issue of overall accuracy in the CRASH model is examined in 

more detail.  A Monte Carlo simulation model is developed both to compare the results 

with the analytical process adopted in this Chapter and with real-world collisions.    
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6 Monte Carlo Simulation to determine Probable Limits of Accuracy 

 

Chapter 6 

 

Monte Carlo Simulation to Determine 

Probable Limits of Accuracy 

 

6.1 Objectives 

In this Chapter the work of the previous Chapter is extended and a simulation model is 

developed to analyse the probable limits on accuracy of the CRASH model in more 

detail.  The input parameters are chosen randomly from a known distribution and the 

Monte Carlo method used to determine the results. 

 

6.2 Description and development of model used 

6.2.1 Introduction 

In the previous Chapter an analytical approach was adopted to determine the likely 

accuracy that can be expected from use of the CRASH model.  Useful results were 

obtained.  However a number of potential problems were identified such as possible 

correlation between some of the input parameters.  In order to remove these potential 

problems another method to determine the likely accuracy is desirable.  The approach 

adopted is to develop a model using the Monte Carlo method on a range of values for 

the input parameters. 

In essence the Monte Carlo method relies on a large number of individual calculations 

of the result using randomly assigned input parameters.  A statistical analysis can then 



6. Monte Carlo Simulation to Determine Probable Limits of Accuracy  Jon Neades 

106 

be performed on the results to determine the probable outcome.  Monte Carlo methods 

can only yield probabilistic and not true results, i.e. it is only possible to give a 

probability that the Monte Carlo estimate lies within a certain range of the true value.  

The error term associated with any such estimate is also probabilistic and has a mean 

value of 2/N where 2 is the variance in the estimate and N is the number of iterations 

performed in the simulation.  It follows therefore that the standard deviation of a Monte 

Carlo simulation scales as   √ . To obtain a likely precision in the standard deviation 

of a result to ±0.01 therefore at least 104  iterations are required.   

Monte Carlo methods rely on a large number of calculations to determine a mean value 

and probable range of uncertainty.  The analytical approach is computationally simpler 

and easier to implement in practical scenarios than an equivalent Monte Carlo 

simulation.  It is also desirable therefore to determine whether the analytical results 

obtained previously can be confirmed using a Monte Carlo simulation.  Such a result 

would enable the calculation of error bounds on the overall results. 

 

6.2.2 Input parameters 

The input parameters to the Monte Carlo method are required to be randomly 

distributed about the desired mean value according to some probability distribution.  

Some method for determining the assignment of values is therefore required.  

Computers are essentially deterministic machines and as such any computer based 

random number generator will be at best a pseudo-random number generator.  As 

indicated by Weinzierl [122] the true randomness of the generated numbers is not 

particularly relevant to Monte Carlo methods.  It is more important that the sampling of 

the distribution is as uniform as possible.  The requirement for a uniform distribution is 

also highlighted by Robert and Casella [92].  A potential problem with random numbers 

is that the numbers need not be distributed evenly over a finite sample.  Levy [58] 

illustrates the clustering and gaps that may occur in pseudo-random sequences.  For 

Monte Carlo simulations Levy shows that it is preferable to use quasi-random 

sequences where the numbers are distributed uniformly.   

The Mathcad documentation [64] indicates that the random number generator used by 

Mathcad generates quasi-random numbers distributed according to the required 

probability density function.  As mentioned in the previous Chapter, repeated 

measurements of a variable generally produce a result which has a normal or 
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Gaussian distribution.  For this reason it is assumed initially that the input parameters 

to the CRASH equation will also be normally distributed about a nominal mean value.  

The assumption of a normal distribution may not be valid for all parameters so the 

effect of different distributions is also investigated.    

  

6.3 Testing methodology 

To determine the effect of uncertainty in each input parameter a series of collisions are 

simulated.  A simple vehicle colliding head-on into a barrier is modelled initially with 

more complex scenarios developed where necessary.  Each of the input parameters 

are varied systematically to determine the overall confidence limits on the results.  The 

simulation is also applied to the RICSAC [51] series of crash tests to provide a 

comparison with the analytical method described in the previous Chapter.  The same 

input parameters and confidence limits are used as described in Table 5.13.  This 

allows a direct comparison to be made with the analytical model for the RICSAC tests. 

The Mathcad implementation of the model developed for this analysis is shown in 

Appendix J.  For comparison with Appendix H and Chapter 5 the data from RICSAC 8 

is displayed.   

One adverse effect of using a random normal distribution about a nominal mean value 

is that certain values may be generated which are physically impossible.  For example 

crush measurements should to be constrained so that they do not become negative.  

Similarly A and B stiffness coefficients cannot be less than zero.  The basic model has 

therefore been modified so that physically impossible values are not utilised but are 

replaced with realistic values.  The method developed here to constrain the generation 

of values is to truncate the lower end of the data to zero.  Where individual values are 

negative the random number generator is utilised to generate a replacement value 

which is positive. To avoid unnecessary bias, the upper end of the data is similarly 

constrained. The combined effect maintains the nominal mean value v but reduces the 

range so that the parameter falls within the range 0 ≤ v ≤ 2v and as such will reduce 

the variance.  

An illustration of the effect of these constraints is shown in Figure 6.1.  In this example 

a nominal mean value of 20 was used with a 95% confidence limit of ±15.  The 

histogram on the left shows the raw distribution obtained from 104 samples.  The 
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second histogram to the right shows the same distribution after adjustment to remove 

the lower and upper tails of data.  

Figure 6.1: Effect of constraints (Sample of 104 normally distributed values) 
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as noted in the previous Chapter, the overall uncertainty can be found as the square 

root of the sum of the individual squared uncertainties.  The results however can only 

be an approximation to the overall confidence limits since the exact values found differ 

on each program run due to the random assignment of input values.     

 

6.4.1 Effect of uncertainty in crush measurements 

As suggested by the overall results and confirmed by a detailed analysis, the major 

contribution to uncertainty in head-on barrier collisions is the uncertainty in the crush 

measurements.  Assuming 95% confidence levels suggested by Smith and Noga [108] 

uncertainty in the crush measurements contributes about 84% of the total uncertainty 

for the 0.1 m crush and about 45% for the 0.4 m crush.  The individual contribution of 

uncertainty in the crush measurements to the overall result is approximately linear up 

to the ±0.1 m level.  However, extending the uncertainty well beyond this range reveals 

a non-linear response as shown in Figure 6.2  

 

Figure 6.2: Contribution to uncertainty by variation in crush measurements 
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This response at increasing levels of uncertainty is due to the constraint limiting the 

variability in crush measurements C to the range 0 ≤ C ≤ 2C as programmed into the 

model and described above.  Importantly these results confirm the earlier suggestion 

that provided the uncertainty in the crush measurement is not greater than about 75% 

of the nominal crush value, the effect of the constraint is not significant.  As might be 

expected these results show too that at low levels of overall crush, uncertainty in the 

crush measurements can contribute a significant uncertainty to the overall result.  At 

low levels of overall crush therefore, measurements need to be taken with as much 

precision as possible. 

Although the result can be sensitive to uncertainty in the depth of crush, the Monte 

Carlo simulations suggest that Δv is not as sensitive to uncertainty in the length of the 

damaged area.  In these simulations the damage length was assigned a nominal value 

of 1.3 m which is typical of the width of the front of a small car.  Assuming an 

uncertainty of 0.1524 m (6”) in the damage length as suggested by Smith and Noga 

[108] the contribution to uncertainty is approximately 5.6 % and is identical for each of 

the simulations.  The results show a linear response to increasing uncertainty and are 

illustrated in Figure 6.3    

 

Figure 6.3: Contribution to uncertainty by variation in damage length 
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6.4.2 Effect of uncertainty in PDOF   

The high contribution to overall uncertainty by crush found in these results conflicts with 

the findings of the previous Chapter where the major contributor was found to be the 

uncertainty in the PDOF.  In these simulations the contribution by the PDOF is 

relatively small and represents less than 1% of the total uncertainty in the 0.1 m crush 

simulation up to about 3% in the 0.4 m crush simulation. Although the proportion of the 

total uncertainty varies, the numerical value for the contribution to uncertainty for each 

of the simulations is identical.  (A slight variation is expected due to the random nature 

of the inputs.)  The response of uncertainty in the result to increasing uncertainty in the 

PDOF is shown in Figure 6.4    

 

 Figure 6.4: Contribution to uncertainty by variation in PDOF 
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equation (5.11).  Variation in this factor affects the overall value of E used in the 

numerator of the CRASH equation.  The relative values of each of these terms 

therefore contributes in a non-linear way to the overall result.  In these simulations the 

nominal PDOF value is zero and variations either side of the nominal value can be 

used to show the relationship between the changes in the values of δ1 and E1.  Ignoring 

restitution, the CRASH equation [equation (2.24)] can be written as 

1 2
1 2

1 2
1 1

2

2( )E E
v

m
m

m





 



. (6.1) 

In collisions such as these where the barrier is assumed to have an effectively infinite 

mass, the second term in the denominator of equation (6.1) vanishes.  In addition the 

term E2 is zero since the barrier does not deform to absorb energy.  This produces the 

simplified expression 

1
1

1 1

2E
v

m
  . (6.2) 

The change in E1 as a result of the change in PDOF (Δζ) can be found from equation 

(5.11) as 

2

1 tan ( )E    . (6.3) 

Substituting equation (5.15) into (5.13) produces an expression for δ1 so that the 

change in δ1 as a result of uncertainty in the PDOF (Δζ) can be expressed as 
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Thus the overall change in Δv1 as a result in the change in PDOF is given by the 

square root of the ratio ΔE1 / Δδ1 i.e. 
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In the car to barrier simulations described here the point of application of the impulse 

lies on the centre line of the vehicle so that  is zero.  This leads to a simplification of 

equation (6.5) giving  

2 2

1 1
1 2 2

1 1

tan ( )
( ) .

sin ( ) cos( )

k k
v

d d



 


   

 
 (6.6) 

Equation (6.6) shows that error in the estimate of PDOF produces an overall effect 

which is inversely proportional to the cosine of the error in angle, with a magnitude 

dependent on the ratio of k1 / d1.   This is illustrated in Figure 6.5 where a range of 

ratios for k1 / d1 are shown  

Figure 6.5: Effect of ratio k/d with uncertainty in estimate of PDOF ( = 0) 
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Figure 6.6: Shape of distribution showing dependence on ratio k/d ( = 0) 

 

 

 

 

 

 

 

 

These results can be expressed in a more general way.  Where the k ≥ d the 
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Figure 6.7 shows that if k is much larger or smaller than d then the overall uncertainty 

in Δv increases significantly from a minimum value.  (The minimum value itself is 

dependent on the uncertainty in the estimation of PDOF.)  The overall uncertainty 

appears to be more sensitive where k is smaller than d.  In the frontal barrier 

simulations used in this section, the ratio k/d is about 0.77.  The dependence on 

sensitivity in PDOF to the ratio k/d is independent of the actual values for k or d.  This 

means that the same overall uncertainty introduced by uncertainty in PDOF will apply 

to all vehicle to barrier collisions with a similar k/d ratio.     

Figure 6.5 and equation (6.6) utilise the simplifying assumption that the angle  was 

zero as is the case for the frontal barrier impacts considered here.  In real-world 

collisions  is unlikely to be zero as the point of application of the impulse is unlikely to 

lie of the centre line of a vehicle.  The inclusion of a non-zero value for  as shown in 

equation (6.5) alters the dependence of overall uncertainty on the ratio k/d.  For 

example utilising a 10° value for  produces the graph shown in Figure 6.8  

 

Figure 6.8: Effect of ratio k/d with uncertainty in estimate of PDOF ( = 10°) 
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linear series of curves.  As a consequence the shape of the distribution of results from 

the Monte Carlo simulations alters so that the mode no longer corresponds to the 

nominal mean value.  The modes tend to be somewhat lower and the data more 

dispersed than when  is zero. Figure 6.9 shows the results from two Monte Carlo 

simulations showing the distributions obtained where k is 120% and 80% of d 

respectively 

 

Figure 6.9: Shape of distribution showing dependence on ratio k/d ( = 10°) 
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Figure 6.10: Dependence of overall uncertainty in PDOF on ratio k/d ( = 10°) 
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6.4.3 Effect of uncertainty in position of point of application 

The simulations performed here suggest that the overall uncertainty in Δv is not 

particularly sensitive to changes in the position of the point of application.  The overall 

contribution to uncertainty is less than 1% for a 0.2 m potential error in estimating the 

point of application.  The results obtained by these simulations are identical for all three 

crush depths and are shown in Figure 6.11 

 

Figure 6.11: Contribution to uncertainty by variation in point of application 
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uncertainty in h affects the magnitude of δ which appears in the denominator of 

equation (6.2).   

 

6.4.4 Effect of uncertainty in mass 

The results of the simulations performed here confirm the earlier findings of Smith and 

Noga [108] to the extent that the result does not appear to be particularly sensitive to 

uncertainty in the measurement of mass.  Assuming the same confidence limit of 50kg 

as suggested by Smith and Noga, the contribution to the overall uncertainty is less than 

2% and is identical for all three simulations.  The results show a linear response to 

increasing uncertainty and are illustrated in Figure 6.12  

 

Figure 6.12: Contribution to uncertainty by variation in mass 
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measurements.  The results obtained by varying the individual stiffness coefficients are 

shown below in Figure 6.13 and Figure 6.14  

 

Figure 6.13: Contribution to uncertainty by variation in A stiffness coefficient 

 

 

Figure 6.14: Contribution to uncertainty by variation in B stiffness coefficient 
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As can be seen the overall uncertainty responds approximately linearly to increasing 

uncertainty in each of the stiffness coefficients.  At low levels of crush the overall 

uncertainty is dominated by the potential error in the A stiffness coefficient.  With higher 

levels of uncertainty the B stiffness coefficient becomes dominant.  This is due to the 

behaviour of the equation to determine the work done in causing crush.  As outlined 

earlier, Singh [99] shows that the work done in causing crush can be determined from 

equation (2.35).  This may be rewritten as the sum of three terms, i.e. 

2

( 1)2 ( 1)6 2

LA LB LA
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n n B

 
  

 
 (6.8) 
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1 1
2 2
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1 1

[ ],       .
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         (6.9) 

The first and second terms in equation (6.8) determine the contributions made by the A 

and B coefficients respectively with variable crush measurements and the third term is 

a constant which is not dependent on crush. The contribution by each of the terms can 

be plotted against increasing crush to determine the relative contribution made by each 

term as a function of crush depth.  This is illustrated in Figure 6.15  

 

Figure 6.15: Contribution by each term to total energy 

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0 10 20 30 40 50 60

C
o

n
tr

ib
u

ti
o

n
 t

o
 t

o
ta

l e
n

e
rg

y 
(%

) 

Crush depth (cm) 

1st term

2nd term

3rd term



6. Monte Carlo Simulation to Determine Probable Limits of Accuracy  Jon Neades 

122 

Figure 6.15 shows that that the relative contribution by the constant third term rapidly 

falls with increasing crush.  The 1st term peaks where the point where the contribution 

by the 2nd and 3rd terms are equal and then falls away leaving the 2nd term as the 

dominant contributor above a certain critical value.  Of minor interest is that assuming a 

uniform crush depth, this critical value is reached when the crush depth reaches 2A/B 

and the 1st term peaks where crush depth is equal to A/B.  This indicates that there is a 

certain level of crush below which uncertainty in the A coefficient will be dominant and 

above which uncertainty in the B coefficient will be dominant.  Again assuming uniform 

crush, this level is at 3A/B.  

 

6.5 Monte Carlo simulation of RICSAC tests 

The Monte Carlo simulation shown in Appendix J was applied to the RICSAC series of 

crash tests.  A similar approach is adopted as outlined in the previous chapter.  Figure 

5.8 shows in blue the input parameters which are measured or otherwise determined 

by the user.  Each of the input parameters has an uncertainty associated with it.  By 

eliminating the uncertainty in all inputs except for the parameter under investigation the 

effect of uncertainty in each input parameter can be investigated.  Suitable ranges for 

each of the input parameters are shown in Table 5.13 and are chosen to match those 

used for the analysis in the previous Chapter.   

The results from these simulations are shown in Appendix L.  The overall uncertainty in 

DeltaV as shown in Table L.1 is calculated using the 95% confidence levels suggested 

by Smith and Noga [108]  As in the previous Chapter, since no uncertainty was 

ascribed by Smith and Noga to the position of the point of application (d), a 95% 

confidence level identical to the crush measurement uncertainty was used, i.e. ±3” 

(0.0762 m).  A 95% confidence level of 0.1 m was assigned to the uncertainty in the 

radii of gyration (k) measurements.  As noted earlier, the overall uncertainty can be 

found as the square root of the sum of the individual squared uncertainties.  The results 

however can only be an approximation to the overall confidence limits since the exact 

values found differ on each run of the simulation due to the random assignment of input 

values. 

In general the results from this analysis match closely those obtained from the analysis 

in the previous Chapter.  The same pattern is evident showing that some impact 

configurations appear to be inherently more sensitive to uncertainty in the input 
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parameters than others.  In addition it can be seen that the major contributor is the 

uncertainty remains the uncertainty in PDOF.  However the mean contribution to 

overall uncertainty in this parameter is reduced from the 61% found using the analytical 

model to 52%.  The mean contribution made by uncertainty in the crush measurements 

is increased from 9% using the analytical model to 15% using the Monte Carlo model.  

These differences are discussed in more detail below.  Since uncertainty due to the 

remaining parameters is virtually the same, these other parameters are not considered 

in detail.  A comparison between the two sets of results is shown in Figure 6.16    

 

Figure 6.16: Comparison of percentage contributions to uncertainty 

 

The results shown in Figure 6.16 show that even if there are differences between the 
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and κ  determined by equation (6.9) and these parameters are subsequently used to 

determine the crush energy in equation (6.8).   Analysis of the results derived from 

equation (6.9) show that the Monte Carlo model generates mean values for κ which are 

higher than the nominal mean value and that there is a small positive skew.  This 

appears to be due to the fact that the κ term is the sum of squared and therefore 

positive values.   

Figure 6.17 shows the difference between Monte Carlo model and analytical model for 

each of the RICSAC tests at three levels of crush uncertainty, 0.01, 0.05 and 0.10 

metres.     

 

Figure 6.17: Difference in contribution by crush uncertainty between models  
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6.5.2 Contribution by uncertainty in PDOF 

The effect of uncertainty in the PDOF averaged over all the collisions is 52% in the 

Monte Carlo simulations compared with 61% in the analytical model considered in the 

previous Chapter.  The results shown in Appendix L show a much greater variation 

between individual collisions as shown in Figure 6.18       

Figure 6.18: Difference in contribution by uncertainty in PDOF between models 
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and Monte Carlo models allows the effect of variation in PDOF on each parameter to 

be examined.  A comparison between the contribution to uncertainty predicted by both 

models for the parameters δ and E separately are shown in Figure 6.19 and Figure 

6.20.   

 

Figure 6.19: Comparison of PDOF contribution to uncertainty (δ only) 

 

 

Figure 6.20: Comparison of PDOF contribution to uncertainty (E only) 
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If the parameters δ and E were completely independent the combined response would 

be the sum of the effects shown in Figure 6.19 and Figure 6.20.  The fact that the 

actual response is as shown in Figure 6.18 indicates the correlation between the two 

parameters.  It is clear too that the major contributor to overall uncertainty is due to the 

energy adjustment factor as shown in Figure 6.20.  For direct comparison with the 

analytical model and existing studies in this area, the energy adjustment factor used 

here is the commonly used factor proposed by McHenry [65] and shown in equation 

(5.11).  In the results presented in Appendix L the effect of equation (5.11) is 

unconstrained.  As discussed in Chapter 4, the energy adjustment proposed by 

McHenry is normally constrained so that it does not exceed 2.0  Constraining the 

Monte Carlo simulation in a similar manner reduces uncertainty in the 60° front to side 

impacts substantially, as it did with the analytical method described in the previous 

Chapter.  As with the analytical model, such a constraint has little effect on the other 

impact configurations.  This result is shown in Figure 6.21    

 

Figure 6.21: Overall uncertainty grouped by impact type 
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to 13% for front to side (FTS) impacts.  The contribution made by uncertainty in the 

PDOF is smaller for front to front (FTF) and front to rear (FTR) impact configurations.   

Figure 6.22: Contribution by PDOF to total uncertainty grouped by impact type 

 

The contribution made by uncertainty in the PDOF tends to dominate overall 

uncertainty.  It is instructive therefore to consider the contribution to uncertainty made 

by all the parameters excluding uncertainty in the PDOF.   Figure 6.23 shows a 
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of uncertainty in the PDOF. 
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In this analysis front to side (FTS) impacts remain significantly more sensitive than front 

to front (FTF) or front to rear (FTR) impacts whether or not the PDOF is included in the 

analysis.  The contribution made by variance in the other parameters accounts 

suggests that even if uncertainty in the PDOF were to be eliminated completely, FTS 

impacts appear to have an overall uncertainty of around 11 – 12% whereas FTR and 

FTF impacts have an uncertainty of around 7 – 9%.  It is also noted that the slight ~1% 

difference between the FTS 60° and 90° impacts appears to be due to the inclusion of 

uncertainty in the coefficient of restitution (ep) for the three FTS 90° impacts.  

 

6.6 Determining overall uncertainty per-collision 

The ultimate aim in forensic collision investigation is the determination of the vehicle 

speeds in a particular collision.  For other purposes it may be sufficient to determine a 

probable range of results for a statistically large data set.  For forensic work however, 

the actual speeds and associated uncertainty is required.  This theme is developed in 

the next Chapter, where actual vehicle speeds are determined.  In this Chapter 

however the uncertainty associated with the change in velocity is under investigation.   

  

Figure 6.24: Comparison of overall uncertainty (constrained PDOF) 
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the RICSAC test collisions.  When grouped by impact type the differences become 

more apparent as shown in Figure 6.25    

Figure 6.25: Comparison between models by impact type (±20° PDOF) 
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 Figure 6.26: Comparison between models by impact type (±10° PDOF) 
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Reducing uncertainty in the PDOF to ±10° reduces the difference between the 

analytical and Monte Carlo models.  It is noted that the remaining differences in the 60° 

FTS impacts (about 3%) appear to be due to the use of the constrained energy 

adjustment factor described previously in section 5.5.2.  It is apparent that the 

constraint applied in this section reduces the variability in the adjustment factor 

significantly more than the corresponding constraint applied in the Monte Carlo model.  

It appears that this is due to the way in which the constraint described in equation 

(5.17) applies equally to truncate both the upper and lower extents of variability in the 

adjustment factor.  For example, in RICSAC 7 the nominal adjustment factor for vehicle 

2 is found to be 1.85  The non-constrained approach produces a standard deviation for 

the adjustment factor of 0.3.  However the constrained approach reduces the standard 

deviation in the adjustment factor to around 0.08.  This subsequently limits the 

uncertainty in the crush energy for vehicle 2 to ±8% as compared with ±32% in the 

unconstrained version.  The corresponding constrained uncertainty in crush energy 

from the Monte Carlo method is approximately ±28%  Where this constraint is not 

applicable, such as for vehicle 1 in the same collision, the analytical model provides a 

limit on uncertainty in crush energy to ±7.9% whereas the Monte Carlo model suggests 

±8.6%; a much closer correspondence.  It may be prudent therefore to consider further 

work on the analytical constraint in an effort to resolve these differences.  

 

6.7 Summary 

These results here suggest that front to side (FTS) impacts are inherently less accurate 

and therefore produce a greater range of overall uncertainty than front to front (FTF) or 

front to rear (FTR) impacts when using the same variance in input parameters.  The 

reasons for this are complex and are dependent on a combination of the effects 

explored in section 6.4.  The main effects include the uncertainty in crush, the 

contribution to uncertainty by the A and B coefficients each of the terms in the crush 

damage equation and the effect of variability in the PDOF.  All of these parameters 

respond in a non-linear manner and it has not been possible to determine a suitable 

correlation between any one factor and overall uncertainty.  

Assuming Smith and Noga‟s [108] input uncertainties, overall uncertainty in DeltaV is 

about 15 – 17% for front to side impacts reducing to 9 – 12% for front to front or front to 

rear impacts.  The largest individual contribution is that due to uncertainty in PDOF.  
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This is consistent with Smith and Noga‟s earlier conclusion and this new analysis 

generates significant new results.  A reduction in this one parameter therefore is likely 

to have the greatest overall effect.  Reducing uncertainty in the PDOF to ±10° reduces 

overall uncertainty to 13 – 15% for front to side impacts and 8 – 10% for end to end 

impacts. 

It should be appreciated however that this analysis is based on a relatively small data 

set with only two or three test collisions in each category.  Larger data sets may 

produce different results.  Additional work may be considered in this area to validate 

the conclusions reached. 

The analytical model produces results comparable to the Monte Carlo method.  It is 

clear too that the two methods produce closer results if the uncertainty in PDOF is 

minimised.  In the next Chapter a method is presented which allows the actual 

velocities of vehicles to be determined.  A useful side effect to this method is that it 

enables better estimates to be made of the PDOF values applicable in a particular 

collision.  The PDOF values used in this and the previous Chapter were determined 

using this technique.  The technique essentially involves adjusting the PDOF values so 

that predicted post-impact trajectories match those determined from field data.  It is 

found that even small variations in PDOF (around 0.1°) can produce significant 

changes in the post-impact trajectories so that estimates of PDOF to within ±1° are 

possible.    
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7 Determining Actual Speeds 

 

Chapter 7 

 

Determination of actual vehicle 

speeds from change in velocity data 

 

7.1 Objectives 

In this Chapter the work of the previous Chapters is extended and a method is 

developed whereby the actual speeds of the vehicles in a collision may be determined 

from change in velocity data.  For practical collision investigation purposes it is 

anticipated that change in velocity data will generally be derived from the CRASH 

equation as described earlier.  However change in velocity data from any other suitable 

source can be used.  The method relies solely on conservation laws and is also 

applicable to situations where the coefficient of restitution is non-zero.  An extension to 

the method is also developed which allows a better estimate to be made of the 

principal directions of force applicable to each vehicle.   

The material presented in this Chapter forms the basis of a paper published in the 

Journal of Automobile Engineering Proc IMechE Part D 225 (1) (2011). 

  

7.2 Introduction 

As outlined in Chapter 2 the scientific reconstruction of road traffic collisions often 

requires the  calculation of the speeds of vehicles involved.  An estimate of the actual 

vehicle speeds is of prime importance to forensic practitioners as for the courts the 
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speed of the vehicles is usually a key factor in the allocation of liability or in the 

decision about criminal offences.  The determination of actual speeds have traditionally 

centred on the analysis of tyre and other marks on the road surface to model the 

behaviour of the vehicles involved and their speeds.  With the increased use of anti-

lock braking systems (ABS), tyre marks are becoming less common.  The presence of 

water on a road surface also decreases the chance of suitable tyre marks being found 

on the road surface.  In situations where there are no tyre marks, any model based on 

the analysis of those marks cannot succeed and the determination of pre-impact 

speeds in particular becomes more problematic.  There are a variety of methods that 

provide information on vehicle speeds in the absence of tyre marks, such as the 

determination of vehicle speed from pedestrian throw distance as discussed by Evans 

and Smith [106].    

In the context of this work, a determination of the change in velocity of vehicles can be 

made using the CRASH algorithm described in Chapter 2.  As shown earlier the 

CRASH algorithm can be considered as two distinct algorithms, one to determine the 

energy absorbed in causing deformation and the second to determine the change in 

velocity of each vehicle.  The CRASH algorithm has the advantage that it does not rely 

on the presence of residual marks on the road surface, but requires only that there is 

crush damage suitable for measuring.  The main disadvantage however is that the 

CRASH method only provides the change in velocity of each vehicle and not the actual 

velocities.   

Normally the pre-impact direction of travel of each vehicle are also known or can be 

estimated for a particular collision.  The method developed in this Chapter shows how 

this information together with knowledge of the change in velocity of each vehicle can 

be used to derive the actual pre and post impact velocities of both vehicles.  This 

method is derived from an analysis of the collision based on the conservation laws of 

linear and angular momentum and includes restitution.  It has the advantage of not 

being limited to any particular method by which the changes in velocity are generated.  

So it can be used as well with in-car accident data recorders that provide data on 

change in velocity as impact phase models such as CRASH. 

Models for the impact phase of collisions commonly make a number of assumptions 

and these are described in Chapter 2.  The same assumptions are also adopted here 

and are summarised below.  First tyre and other external forces are assumed to be 

negligible during the impact, so that momentum is conserved.  Second, the vehicle 
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masses and moments of inertia are maintained throughout the collision.  That is the 

deformations caused by the collision do not significantly change the moments of inertia 

and the masses of the vehicles are not significantly changed, for example, by parts of a 

vehicle becoming detached as a result of the collision.  Third, the time-dependent force 

can be modelled by one resultant impulse which acts at some point on or in the 

vehicles.  Similarly as with CRASH and the other impact models described in this work, 

the discussion here is restricted to two vehicle planar collisions.  For collisions involving 

significant vertical motion, this analysis will need modification. In the next section 

planar collisions are analysed to develop a new model to calculate the change in 

velocity of vehicles and also to derive expressions for the closing speed. 

 

7.3 Planar Collisions 

In this section the conservation laws of momentum are used to derive expressions for 

the change in velocity (v).  Smith [105] shows how the equations for Δv can be 

derived from the conservation of momentum and conservation of energy without 

recourse to a specific model for how the energy absorbed by the vehicles is related to 

damage.  In this section an alternative derivation of the equations for Δv is also 

presented.  Rose et al. [95] use a heuristic method based on McHenry‟s spring model 

[65] to obtain some interesting and helpful results for collisions.  Also in this section, 

new equations are developed which provide expressions for the closing speeds which 

includes the energy absorbed by the vehicles.  Such an analysis provides a rigorous 

and general basis for the results.  However more importantly the analysis yields a 

yields new results.  Equations (2.1) - (2.4) described in Chapter 2 form a system of four 

equations describing the conservation of momentum.  These equations lead to an 

expression relating the two changes in velocity, i.e. 

2

1

1 2

m

m
  v v . (7.1) 

In addition, the change in rotation of the two vehicles can be expressed as 

1 2
1 1 2 22 2

1 2

,       .
h h

v v
k k

        (7.2) 

Lower case symbols are used for motion at the centre of mass.  Upper case symbols 

are used to distinguish motion at the point of application of the impulse so that Up is 
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denotes the component of the vehicle‟s velocity before impact in the direction of p at 

the point where the impulse P acts then 

1p 1 1 1 2p 2 2 2,       U h U h      u p u p  (7.3) 

where p is a unit vector in the direction of P.  Similarly Vp may be used to describe the 

component of vehicle‟s velocity after impact in the direction of p 

1p 1 1 1 2p 2 2 2,       V h V h       v p v p . (7.4) 

The coefficient of restitution (ep) for the vehicles in the direction of P at the point where 

the impulse acts may be defined so that 

2p 1p p 2p 1p( )V V e U U    . (7.5) 

The substitution of equations (7.2) to (7.5) into equation (7.1) produces 

2 p 2p 1p 1 2 1 2 1 1 2 2 2(1 )( ) ( ) .m e U U m m v m h m h           (7.6) 

Further substitution of equations (7.1) and (7.2) into equation (7.6) then produces 

2 p 2p 1p

1

1 2 2 1

(1 )( )

( )

m e U U
v

m m 

 
 


 (7.7) 

where 

2 2

1 2
1 22 2

1 2

1 ,       1
h h

k k
     . (7.8) 

Using a similar notation to that used by Brach [11] it is noted that result (7.7) can also 

be written as 

p 2p 1p

1

1

(1 )( )m e U U
v

Am

 
   (7.9) 

where  

2 2

1 2

2 2

1 1 2 2

1
mh mh

A
m k m k

   , (7.10) 
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1 2

1 2

m m
m

m m



. (7.11) 

Results (7.7)  and (7.9) describe the changes in velocity at the centre of mass of the 

vehicle in terms of the closing speed of the points of contact between the vehicles.  

Since the closing speed of the vehicles is unknown for the majority of collisions, such a 

result is of limited use.  However following a method similar to that of Smith [105] it is 

possible to determine the closing speed in terms of the total work done in causing 

crush to the vehicles as a result of the collision.  This allows the unknown closing 

speed parameter in equation (7.7) to be replaced by a value which can be calculated 

from post-impact data.  The work done in causing crush can be estimated using the 

methods described by McHenry [65], as described earlier, or any other suitable 

method.  The total work done in causing crush (crush energy) to the vehicles as a 

result of the collision can be expressed as   

T RE E E   (7.12) 

where 

2 11
1 1 2 1 1 12

2

( ) ( ) 1T

m
E m v m v

m

 
        

 
u p u p , (7.13) 
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. (7.14) 

Equation (7.12) can be solved for the closing speed U2p – U1p to yield result (7.15) 

1 1 2 2 1
2p 1p

1 1 2

( )

2

v m mE
U U

m v m

  
  


. (7.15) 

As described by Smith [105], the substitution of U2p – U1p from result (7.15) into 

equation (7.7) leads to the commonly used formula to calculate velocity change 

2 p

1

1 1 2 2 1 p

2 (1 )

( )(1 )

Em e
v

m m m e 


 

 
. (7.16) 

Equations (7.7) and (7.16) both describe the change in velocity at the centre of mass 

(v) along the line of action of the impulse.  From equations (7.3) and (7.4) the change 
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in velocity at the point of application of the impulse in the direction of p (ΔVp) may be 

described by the expression 

pV h      v p . (7.17) 

The substitution of equations (7.2) and (7.8) into equation (7.17) produces the result 

p  ( )V    v p . (7.18) 

Equation (7.18) shows that along the line of action of the impulse P, the change in 

velocity of the point of application is equal to the product of the change in velocity at the 

centre of mass and the scalar value DeltaV.  It should be noted that in addition to the 

change in velocity along the line of action of the impulse there is also a tangential 

change in velocity at the points of action ( ΔVt ) due to the consequent change in 

rotation as defined by equation (7.2).   If Ut  and Vt are used to denote the component 

of the vehicle‟s velocity before impact in a direction perpendicular to p at the point 

where the impulse P acts then 

t t t t,       U h V h      u p v p  (7.19) 

where ht is related by Pythagoras to h as shown by equation (7.20) where d is the 

distance from the point of application of the impulse to the centre of mass 

2 2 2

td h h  . (7.20) 

From Newton‟s laws of motion there can be no change in velocity at the centre of mass 

perpendicular to the impulse P.   Thus any change in velocity of the points of action 

tangential to the impulse can only be due to a change in the angular velocity of the 

vehicle.  The change in velocity tangential to the direction of the impulse for each 

vehicle can now be obtained by equation (7.21) 

1t 1t 1 2t 2t 2 ,        .V h V h        (7.21) 

 

7.4 Closing Speeds 

The changes in velocity of each vehicle at the centres of mass and at the point of 

application of the impulse are described in the previous section.  In this section the total 

closing speed of the vehicles is derived as the vector sum of the closing speed in the 
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direction of the impulse and the closing speed perpendicular to the impulse.  A method 

is then described which uses the total closing speed to determine the actual speeds of 

the vehicles at impact.  From result (7.7) an expression for the closing speed along the 

line of action of the impulse at the point of action of the impulse can readily be obtained 

1 1 2 2 1
2p 1p

2 p

( )

(1 )

v m m
U U

m e

  
 


. (7.22) 

Alternatively, as Smith [105] demonstrates, the total energy absorbed in the collision 

may be expressed as 

eE E E   (7.23) 

where 

21
1 1 2 2 1

2

( ) ( )
2

m
E v m m

m
 

 
   
 

, (7.24) 

1 1 2 2 2 1 1 1( )eE m v h h        v p v p . (7.25) 

The closing speed in the direction of P can now be found by substituting equations 

(7.4) and (7.5) into equation (7.25) to yield 

p 1 1 2p 1p( )eE e m v U U    . (7.26) 

Equations (7.18), (7.24), and (7.26) can then be used in equation (7.23) to produce  

1 2 2 1
2p 1p 2

1 2 p

2 ( )

(1 )

E m m
U U

m m e

 
 


. (7.27) 

Equation (7.27) is similar to that derived by Rose et al [95] but is more general as it 

includes the effect of restitution.  Rose et al restrict their subsequent analysis to one 

dimension along the line of the impulse.  As highlighted previously, it must be noted 

that there is also a tangential change in velocity at the point of application of the 

impulse due to the change in rotation.  The component change in velocity for each 

vehicle tangential to the impulse where the impulse acts is given by equation (7.21).  

The tangential change in velocity for vehicle 1 can be subtracted from that for vehicle 2 

to yield 
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2t 1t 2t 2 1t 1  V V h h       . (7.28) 

Substitution of equations (7.1), (7.2) and (7.19), into equation (7.28) produces 

1t 1 2t 2
2t 1t 1 1 2 2

1 1 2 2

h h h h
V V m v

m k m k

 
      

 
. (7.29) 

Equation (7.7) can be substituted into (7.29) to produce 

1 2 p2t 1t 1t 1 2t 2

2 2

2p 1p 1 2 2 1 1 1 2 2

(1 )

( ) ( )

m m eV V h h h h

U U m m m k m k 

    
  

   
. (7.30) 

This may be written in a format similar to that of equation (7.9) to yield 

2t 1t
p

2t 1t

( )
1 (1 ).

( )

V V B
e

U U rA


  


 (7.31) 

where A and m are given by equations (7.10) and (7.11) respectively and 

1t 1 2t 2
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 (7.32) 
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2p 1p

( )
.

( )

U U
r

U U





 (7.33) 

Analogously to equation (7.5), and in a similar manner to that used by Ishikawa [43] a 

tangential coefficient of restitution ( et ) can be defined such that 

2t 1t t 2t 1t( ).V V e U U     (7.34) 

Substitution of equation (7.34) into equation (7.31) produces a result showing the 

relationship between the tangential closing speed and the closing speed along the line 

of action of the impulse 

2t 1t t 2p 1p p( )(1 ) ( )(1 ).
B

U U e U U e
A

      (7.35) 

The coefficient et will be zero when relative tangential motion between the two points of 

application ceases at or before separation of the vehicles.  It is suggested that this 

situation will occur in the majority of vehicle to vehicle collisions so that it may be 
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assumed that et is zero leading to a simplification of the following equations.  Where et 

is zero (i.e. V1t = V2t), equation (7.29) becomes 

1t 1 2t 2
2t 1t 1 1 2 2

1 1 2 2

h h h h
U U m v

m k m k

 
    

 
. (7.36) 

This formula gives the component of the closing speed perpendicular to the direction of 

the PDOF.  This formula gives the tangential closing speed component in terms of Δv 

and includes the effects of restitution along the line of action of the impulse (ep) via 

equation (7.16).  This is a key equation in the calculation of the closing speeds and so 

of the vehicles speed.   

In addition, where et is zero equation (7.35) can be written 

p(1 ) 0rA B e   . (7.37) 

As explained in Chapter 2, Brach [11] develops his Planar Impact Mechanics model 

(PIM) to demonstrate how using the conservation of momentum, a model can be 

derived which models the behaviour of vehicles during the impact phase.  His model 

partitions the impulse into normal and tangential components which are related to each 

other by an impulse ratio µ and also includes a normal coefficient of restitution.  

Although the choice of impact plane is not critical in his model, the choice of impact 

plane effectively determines the impulse ratio µ and the coefficients of restitution.  A 

critical impulse ratio µ0 is also defined by Brach as the impulse ratio at which a 

common tangential post-impact velocity may be determined.  With an orientation of the 

impact plane perpendicular to the impulse as defined in Chapter 2, then there can be 

no tangential impulse component so that Brach‟s critical impulse ratio µ0 will also be 

zero.   

It is noted that the left hand side of result (7.37) is identical to the numerator in Brach‟s 

equation to determine the critical impulse ratio µ0.  This indicates that Brach‟s model 

and the model presented here both predict a common tangential post-impact speed 

with the same initial conditions and orientation of the impact plane.   Collisions where 

relative tangential motion continues beyond separation implies a non-zero tangential 

coefficient et   Such a non-zero tangential coefficient will occur for example in 

sideswipe type collisions.  Without loss of generality, the substitution of equation (7.34) 
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into equation (7.21) yields an expression for the closing speed perpendicular to the 

impulse 

2t 1t 1t 1 2t 2 t(   ) / (1 )U U h h e        (7.38) 

The total closing speed ( UR ) can now be expressed as the vector sum of the 

component results from equations (7.22) [or (7.27)] and (7.38) 

2 2

R 2p 1p 2t 1t( ) ( )U U U U U     (7.39) 

Of note is that an alternative to result (7.39) can be determined by using result (7.35).  

Using this result the total closing speed can be expressed without explicit reference to 

the tangential closing speed to give 

2 2
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R 2p 1p 2 2
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B e
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 (7.40) 

The angle of the closing speed vector to the impulse P (  ) can be found from equation 

(7.33) 

2t 1t 2p 1ptan ( ) ( )r U U U U      (7.41) 

Using result (7.35), angle  can also be defined solely in terms of A and B and the two 

coefficients of restitution ep and et  

p

t

(1 )
tan

(1 )

B e

A e






 (7.42) 

In CRASH analyses it is usual to define a principal direction of force (PDOF) for each 

vehicle as the direction in which the impulse acts so as to cause the observed damage.  

Brach [11] suggests that the requirement to estimate the PDOF is a major weakness in 

CRASH and the work of the previous Chapters shows that an accurate estimate of the 

PDOF is important in reducing uncertainty.   A new method is presented later in this 

Chapter which permits a more realistic estimate to be made of the actual impulse and 

therefore the PDOF values applicable to each vehicle. 

The impact geometry of a typical collision is illustrated in Figure 7.1 where two vehicles 

V1 and V2 collide obliquely as shown in the insert. 
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Figure 7.1: Impact Configuration 

 

 

Defining the PDOF values for each vehicle uniquely determines the angle between the 

two vehicles at impact by Newton‟s Third Law.  This value (α) can be determined from 

the PDOF values (ζ) as 

1 2       (7.43) 

It follows that the angle () between the initial heading of vehicles and the closing 

speed can then be described by the expressions 

1 1 2 1 2,       .                (7.44) 

When there is no pre-impact rotation by either vehicle, the closing velocity of the points 

of action for each vehicle must also be the closing velocity of their centres of mass.  

The absence of significant pre-impact rotation is a common feature in many collisions 

and the simplifying assumption that pre-impact rotation is zero, or at least negligible, 

does not severely limit the number of collisions amenable to this technique.  If there is 

significant pre-impact rotation, then this method cannot distinguish between the closing 

velocity due to the translational motion of the vehicles or that due to rotational motion.  
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If there is pre-impact rotation therefore, additional information will be required to 

resolve this difference.   

Consideration of the triangle of vectors formed by the closing speed vector and the 

initial velocity vectors, indicates that the Sine Rule can be used to determine the actual 

speed of the vehicles.  Where there is no pre-impact rotation as described earlier, 

result (7.45) determines the initial vehicle speeds where  is the angle between the two 

vehicles at impact 

R 1 R 2
2 2 1 1

sin( ) sin( )
,       .

sin sin

U U
U u U u

 

 
     (7.45) 

Once the pre-impact velocities have been found it is straightforward to determine the 

post-impact velocities using the change in velocity ( v ) for each vehicle. 

This method has been used with the RICSAC tests to compute the initial speeds.  

These calculations are discussed in more detail in following sections. It should be 

emphasised that no knowledge of how the values for v are obtained is assumed in 

this derivation.  As a result equation (7.45) is equally applicable to any model yielding 

the changes in velocity of each vehicle. 

 

7.5 Discussion 

7.5.1 Practical Considerations 

Using this technique requires that some way is available to determine the changes in 

velocity sustained by each vehicle.  These values may be calculated using any suitable 

force-crush model, or generated by some other method, such as from in-car accident 

data recorders.  In the situation where a data recorder was fitted to only one vehicle, 

equation (7.1) may allow the v of the other vehicle to be estimated from the relative 

masses of each vehicle.   

A commonly used model used to generate values for v is that provided by CRASH.  

As demonstrated previously the CRASH model uses a linear force-crush model to 

determine the work done in causing crush to each vehicle in a collision (E1 and E2 ) 

(See e.g. Day and Hargens [22] or McHenry [65]) Practical considerations for 

measuring vehicles are described more fully by Neades and Shephard [75] and are 
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outlined in Chapter 3.  CRASH based programs calculate the positions of the damage 

centroids using the geometry of the deformed areas and these are frequently used to 

define the points of application of the impulse P.  The shape of the damaged area is 

also used to assist in estimating the PDOF.  Ishikawa [42] provides an alternative 

method to estimate the PDOF for the vehicles from the damage profiles which may be 

helpful in determining these values.  He proposes a method whereby the impact centre 

is assumed to be the mid-point of the contacting surfaces at the point of maximum 

deformation.  The PDOF is then assumed to lie along a line perpendicular to the line of 

the contacting surfaces through the impact centre.  The difference between these two 

methods is usually small and the choice of PDOF is discussed further in section 7.7. 

Essentially the CRASH algorithm consists of two distinct processes.  One to determine 

the crush energy and a second process where those energy values are utilised to 

determine the changes in velocity.  The derivation here does not rely on any particular 

deformation law and describes the second process.   

 

7.5.2 The effect of restitution 

In the majority of substantial vehicle to vehicle collisions, the points of application of the 

impulse reach a common velocity tangential to the impulse so that V2t = V1t.  If the 

coefficient of restitution in the direction of the impulse ( ep ) is also zero this implies that 

the points of action reach a common velocity during the collision phase.  This is the 

common velocity assumption present in many of the CRASH derivations.  As described 

previously, Smith [105] shows that the common velocity assumption may be relaxed 

somewhat by the inclusion of a non-zero coefficient of restitution along the line of 

action of the impulse.  This leads to equation (7.16) which can be viewed as an 

extension to the standard or zero restitution CRASH model.  If the coefficient of 

restitution in the direction of the impulse is greater than zero, then the points of 

application of the impulse reach a common velocity along the line of action of the 

impulse at the moment of maximum engagement.  At the moment of maximum 

engagement the maximum amount of energy has been absorbed by the vehicle 

structures.  If energy is then returned to the vehicles due to restoration of the vehicle 

structure, the velocities of the vehicles continue to change beyond that required simply 

to reach a common velocity at the point of application of the impulse as outlined by 

Brach [11].   
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In situations where the points of action do not reach a common velocity, such as in a 

sideswipe type of collision, the common velocity assumption becomes invalid.  In such 

situations it is likely too that the impulse no longer dominates the tyre forces so that 

there is also unlikely to be any major engagement between the vehicles and a 

corresponding lack of residual crush to the structural members of vehicles.  In such 

collisions any assumption that there is a common tangential post-impact velocity (i.e. 

V2t = V1t) is no longer valid.   

Smith and Tsongas [110] report a series of staged collisions where they found that the 

coefficient of restitution was between 0 and 0.26.  In general, they report that lower 

values of restitution tend to be found as the closing speed increases.  Little information 

is available to indicate their methodology but it seems likely that these collisions were 

central and that restitution was calculated along the line of action of the impulse.  Wood 

[125] also suggests a similar relationship based on a series of full scale crash tests with 

a maximum restitution of about 0.3  More recently Rose, Fenton and Beauchamp [94] 

investigated the effects of restitution for a single type of vehicle (a Chevrolet Astro van) 

in head-on collisions with a barrier.  Here they found that the coefficient of restitution 

varied from 0.11 to 0.19 for impact speeds around 47 – 57 kmh-1.  Cipriani et al [21] 

studied a series of vehicle to vehicle collinear impacts with low speeds up to 7 ms-1 and 

discovered that restitution varied from about 0.2 to 0.6 with the lower values found for 

higher impact speeds.    At lower closing speeds it is apparent that restitution effects 

can be significant.   

The use of a positive coefficient of restitution ep increases the calculated closing speed 

and as a result tends to increase the pre-impact speeds determined for each vehicle.  

Minimum pre-impact speeds are therefore calculated when ep is zero, which as 

previously noted is likely to be close to the actual value for higher speed collisions.  

Determining the minimum impact speed for each vehicle is often of prime importance 

particularly in criminal forensic collision investigation.   

 

7.6 Example Collisions 

7.6.1 Standard Energy Adjustment Factor 

This model has been applied to the data from the Research Input for the Computer 

Simulation of Automobile Collisions full scale tests (RICSAC) [51] using the standard 
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energy adjustment factor defined by McHenry [65] and examined in Chapter 4.  An 

analysis using the new energy adjustment factor also defined in Chapter 4 is presented 

in the next section.  This is the same data set as used in earlier Chapters investigating 

the overall accuracy of the CRASH algorithm.  As highlighted earlier it is apparent that 

in several of the tests there are significant discrepancies between the recorded 

damage profiles and the photographs of the damage.  These discrepancies result in 

very large force differences in the calculations.  This is particularly evident in tests 2, 6 

and 7 where force differences of 469%, 577% and 608% respectively were obtained.  

As detailed earlier, the data from these tests has been adjusted in an attempt to rectify 

some of the more obvious discrepancies.  The changes in velocity for each of the 

collisions is show in Appendix F.  

As an illustration of the entire process, Test 8 of the RICSAC series is analysed in 

detail.  Test 8 of the series was a set up to be representative of a 90° intersection 

collision with both vehicles travelling at 9.2 ms-1 at impact.  A CRASH damage analysis 

shows that with the PDOF values as recorded, the work done in causing deformation to 

the vehicles was 63 kJ.  Using the recorded PDOF values and a zero coefficient of 

restitution (ep = 0), the method described here uses equation (7.16) to determine the 

speed change in the direction of the PDOF.  Equation (7.27) gives the closing speed in 

the direction of the impulse as 12.83 ms-1.  Equation (7.38) gives the closing speed 

perpendicular to the impulse as 5.86 ms-1.  These component results can be used in 

equation (7.39) to determine the total closing speed as 14.1 ms-1. With this 

configuration the angle 1 is 24.5° and angle  is 90°.  Using equation (7.45) the pre-

impact speeds are found to be 8.18 ms-1 for vehicle 1 and 11.49 ms-1 for vehicle 2.  

From these values and the calculated changes in velocity from equation 16 the post-

impact motion can be determined from the definition of Δv. 

Diagrams in Jones and Baum [51] show that for Test 8 the centres of mass of each 

vehicle moved off along a common post-impact direction of approximately 40° - 50° to 

the original direction of travel of vehicle 1.  The calculated post-impact motion of the 

vehicles for Test 8 with a zero coefficient of restitution shows that the centres of mass 

of the vehicles do not follow the recorded post-impact direction of travel.  Indeed when 

the coefficient of restitution is close to zero the vehicles appear to pass through each 

other as shown in the first part of Figure 7.2.   This cannot be a realistic scenario for 

this type of impact configuration.  A more realistic model can be achieved however by 

using a non-zero coefficient of restitution ep.  The post-impact motion predicted for 
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RICSAC Test 8 using coefficients of restitution of 0.0 and 0.3 are shown in Figure 7.2 

to illustrate this effect.  The PDOF for each vehicle and the coefficient of restitution are 

difficult to determine accurately.  Various reasonable values were tried and the best 

ones selected on the basis of the force balance and post-impact direction of travel.  

The optimum values gave pre-impact speeds of 8.9 ms-1 for vehicle 1 and 9.0 ms-1 for 

vehicle 2 which underestimate the measured speeds by 0.3 and 0.2 ms-1 respectively. 

 

Figure 7.2: RICSAC Test 8: Motion of centres of mass with varying restitution 

 

The remainder of the RICSAC tests can be treated in a similar way to calculate pre-

impact speeds for these tests.  Early versions of the CRASH measuring protocols 

indicated that crush damage should be measured at the level of maximum intrusion.  

Later versions of CRASH suggest that crush damage should be measured at the main 

load bearing level, i.e. at bumper and sill level as described in Chapter 3 and in Neades 

and Shephard [75].   

Comparison between the photographs and the recorded measurements suggest that 

the early measurement version was used to determine the damage profiles.  For 

example the photographs of vehicle 2 in both tests 1 and 2 show considerable intrusion 

at about mid-door level but much less intrusion at sill level.    The author has examined 

and measured scores of damaged vehicles.  Based on this experience, photographs 

and the measurements an estimate of the likely crush at the load bearing level have 

been made for each vehicle.  The adjustments made vary dependent on the particular 

damage to each vehicle.  Although such a process is somewhat rough and ready the 

ep = 0.0 ep = 0.3 
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resulting measurements provide a better approximation of the damage profiles to the 

stiff parts of the vehicles.   

In addition the PDOF values for each vehicle were adjusted so that although the 

configuration of the vehicles at impact remained constant, the post-impact directions of 

travel for the centres of mass matched those recorded for each of the tests as shown in 

the diagrams presented by Jones and Baum [51].  Three 90° impact tests were 

conducted (Tests, 8, 9 and 10).  As outlined previously in each of these collisions a 

coefficient of restitution of 0.3 has been applied so that a reasonable match was 

achievable with the recorded post-impact motion.  Note that using a coefficient of 0.3 

produces a reasonable match for each of these three tests.  Further adjustment around 

0.3 can produce a marginally closer fit but with little change in the calculated closing 

speed.  The actual adjustments made are detailed in Table 5.7 and  

Table 5.8. The results from this analysis are shown in Table 7.1.   

 

Table 7.1: RICSAC Closing speed results – Standard energy adjustment (ms-1) 

Test 
Calculated Δv Total Closing 

Speed 

Measured Pre- 
impact Speed 

Calculated Pre-
impact Speed 

V1 V2 V1 V2 V1 V2 

1 5.3 7.9 16.0 8.8 8.8 9.2 9.3 

2 8.4 12.6 25.6 14.0 14.0 14.8 14.8 

3 3.0 4.8 8.5 9.4 0.0 8.5 0.1 

4 6.6 10.3 17.6 17.2 0.0 17.6 0.2 

5 5.9 10.7 17.3 17.7 0.0 17.3 -0.4 

6 5.2 8.5 17.3 9.6 9.6 10.0 10.0 

7 6.1 13.2 24.0 13.0 13.0 13.9 13.9 

8* 6.6 6.2 12.6 9.2 9.2 8.9 9.0 

9* 6.7 3.1 12.2 9.4 9.4 8.6 8.6 

10* 10.9 5.3 18.6 14.8 14.8 13.1 13.2 

11 9.7 6.1 16.3 9.1 9.1 8.0 8.4 

12 16.0 11.1 27.1 13.6 14.0 13.6 13.7 

*Coefficient of restitution ep = 0.3 

 

A graph summarising these results comparing the measured pre-impact speed of each 

vehicle with the pre-impact speed calculated by this method is shown in Figure 7.3.  

(Note that the stationary target vehicles used in tests 3, 4 and 5 have been omitted 

from the results.) 
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Figure 7.3: Percentage error of calculated and actual pre-impact speed 

 

 

These results indicate that the pre-impact speeds calculated using this technique for 

the RICSAC tests range from -12% to +8% with a mean underestimate of 2%.  Smith 

and Noga [107] note that in the collisions they considered, CRASH tended to 

underestimate v with a mean error of ±13.8% for higher speed collisions (40 – 48 

kmh-1) and ±17.8% for lower speed collisions (16 – 24 kmh-1).    The results here seem 

also to indicate that the work done in causing crush has been underestimated.  One 

source of error may be that in several of the RICSAC collisions the crush damage 

profile recorded does not seem to replicate the crush profile as shown in photographs.  

Although the damage profiles were adjusted in this analysis to better replicate the 

damage profiles, with more representative measurements a better correspondence to 

the actual speeds is to be expected.   

In the Lotus crash tests [45] vehicles were crashed into stationary target vehicles.  A 

similar analysis of the crash data as performed for the RICSAC tests reveals a 

correspondence of calculated impact speeds to actual speeds of between -9.6% to 

+3.7%  A detailed analysis of the likely sources and magnitude of error is presented in 

Chapters 5 and 6. 
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7.6.2 New Energy Adjustment Factor 

The data from the RICSAC tests has also been applied using the new energy 

adjustment factor defined in Chapter 4.  The development of this factor in Chapter 4 

also resulted in the development of a method to transform coefficients of restitution to 

alternative orientation of the impact plane.  This permits the analysis of those collisions 

where a non-zero coefficient of restitution parallel to the impulse was required.  The 

tests affected by this adjustment are tests 8, 9 and 10.  The results using the new 

adjustment factor for all the RICSAC tests are shown in Table 7.2.  Further details of 

this analysis are provided in Appendix M 

 

Table 7.2: RICSAC Closing speed results – New energy adjustment (ms-1) 

Test 
Calculated Δv Total Closing 

Speed 

Measured Pre- 

impact Speed 

Calculated Pre-

impact Speed 

V1 V2 V1 V2 V1 V2 

1 5.3 7.9 15.6 8.8 8.8 8.97 9.00 

2 8.4 12.6 24.2 14.0 14.0 13.97 14.02 

3 3.0 4.8 8.4 9.4 0.0 8.37 0.00 

4 6.6 10.3 17.6 17.2 0.0 17.56 0.01 

5 5.9 10.7 17.3 17.7 0.0 17.35 0.00 

6 5.2 8.5 16.3 9.6 9.6 9.44 9.44 

7 6.1 13.2 22.5 13.0 13.0 13.02 13.00 

8* 6.6 6.2 14.5 9.2 9.2 10.23 10.28 

9* 6.7 3.1 14.0 9.4 9.4 9.89 9.89 

10* 10.9 5.3 21.3 14.8 14.8 15.07 15.11 

11 9.7 6.1 16.2 9.1 9.1 7.95 8.31 

12 16.0 11.1 27.1 13.6 14.0 13.53 13.63 

*Coefficient of restitution ep = 0.3 

 

 

The results using the new energy adjustment factor produce a slightly closer set of 

values to those calculated using the standard energy adjustment factor.  Overall the 

accuracy is just under 0.2% with a standard deviation of 5.5%.  A direct comparison 

between the sets of results with the recorded pre-impact speeds are shown in Figure 

7.4 and Figure 7.5.  For clarity the comparison between vehicle 1 and vehicle 2 are 

shown separately      
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Figure 7.4: Comparison between energy adjustment models Vehicle 1  

 

 

Figure 7.5: Comparison between energy adjustment models Vehicle 2 

 

As can be seen, the overall correlation between the recorded pre-impact speed and the 

calculated speed is remarkably close with both models.  Although in percentage terms 

the accuracy ranges up to about ±12% this corresponds to inaccuracy in the actual 

speeds of no more than ±1.1 ms-1 using the new model and one example (test 10) at  
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+1.6 and 1.7 ms-1 for vehicles 1 and 2 respectively using the standard energy 

adjustment model. 

 

7.7 Accuracy 

In this section the accuracy of this method is discussed.  Three parameters are 

identified as key values affecting the overall accuracy and each is considered in turn.  

These are the impact angle alpha, the method used to determine v in the first place 

and the choice of the point through which the impulse acts. 

The techniques developed in this Chapter cannot be applied to all collisions.  As  

tends towards 0 or 180°, sin  will tend towards zero leading to a singularity in result 

(47).  With  at 0 or 180° therefore all that can be calculated is the closing speed of the 

vehicles and not the actual speeds of either vehicle.  Without additional information 

concerning the pre-impact speed of one of the vehicles, it is not possible to determine 

the individual speeds of either vehicle.  At angles close to these extremes, any results 

from result (7.45) will become sensitive to the exact angle and should therefore be 

treated with caution.  This is very similar to the way in which conservation of 

momentum calculations become sensitive to changes in angles at near-collinear 

calculations.  

The most important factor which affects the accuracy of the calculations are the 

inaccuracies in the method used to determine the change in velocity itself.  Thus if 

using CRASH to generate v values the overall accuracy will be broadly similar to 

those inherent when using CRASH.   However techniques to improve the accuracy of 

those calculations have been developed and outlined in this Chapter.  Implicit in the 

overall accuracy is the estimation of the direction of the impulse (PDOF) and also the 

angle .  In CRASH this choice will also affect directly the calculation of energy 

absorbed by each vehicle as explained in Chapter 6.  The estimation of the direction of 

the impulse determines the proportion of the closing speed allocated to each vehicle.  

Thus an accurate choice is important.  Figure 7.6 shows how the initial speeds of the 

vehicles are affected by varying the PDOF.  Data from RICSAC Test 9 is used together 

with a zero coefficient of restitution.  It is also assumed that the attitude of the vehicles 

remains constant throughout the impact.   
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Figure 7.6: RICSAC Test 9. Variation of initial vehicle speeds with PDOF  

 

 

The sensitivity of the results to the actual direction of the impulse as indicated by 

Figure 7.6 suggests that a visual estimation of the direction of the PDOF may not be 

sufficiently precise.  This is the normal method of operation for investigators using 

CRASH which requires an estimate of the PDOF for each vehicle.  Investigators 

commonly estimate the direction of the impulse from the pattern of damage sustained 

by each vehicle.  As described earlier, in real-world collisions the immediate post-

impact directions of motion of each vehicle can often be deduced from an analysis of 

tyre and other marks on the roads surface.  With the techniques described here, the 

post-impact velocity is straightforward to obtain.  Using this information it is then 

possible to refine the initial estimate of the PDOF and restitution values so that the 

calculated post-impact directions of travel match those recorded for actual collisions. 

The value of v is dependent on the value h for each vehicle since this factor not only 

determines the change in velocity of the centre of mass, but also determines the 

change in rotation ∆ω.  This value is itself dependent upon the point chosen as the 

point through which the impulse acts.  Thus the choice of this point on each vehicle will 

Vehicle 1 

Vehicle 2 
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have an effect on the calculated speeds.  In CRASH calculations the point through 

which the impulse acts is normally assumed to be the centroid of the damaged area.  

Ishikawa [42] proposes a method whereby the impact centre is assumed to be the mid-

point of the contacting surfaces at the point of maximum deformation.  He provides a 

method whereby that point can be calculated.  Unfortunately this calculation requires 

knowledge of the impulse and post-impact rotation which are themselves affected by 

the location of this point.  It is apparent however that the position of this point could 

vary by as much as half the crush depth.  An analysis of the RICSAC tests produce 

differences of less than 1 ms-1 for each vehicle.  As confirmed by the analyses in 

Chapters 5 and 6 this suggests that the calculation of the initial speeds is not 

particularly sensitive to variations in this parameter.  

 

7.8 Summary 

The method presented in this Chapter demonstrates that the pre-impact speed of a 

vehicle can be determined from an analysis of the changes in velocity sustained by 

each vehicle.  This data can be from any suitable algorithm that provides such changes 

in velocity.  The technique has been applied to a series of crash tests where changes 

in velocity were determined using the commonly used CRASH algorithm.  Results are 

presented using the standard energy adjustment factor and a new adjustment factor 

both of which are described in Chapter 4.  It is shown that the new adjustment factor 

produces results which are slightly closer to the actual vehicle speeds than the 

standard adjustment factor.  However it is recognised that this is a limited data set and 

a more comprehensive series of tests is desirable.   

A technique has also been suggested to improve the accuracy of the estimation of the 

PDOF which is required as an input parameter to CRASH.  Application of these 

techniques should provide more reliable results for crash investigators involved in 

analysing collisions. 
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8 Conclusions 

 

Chapter 8 

 

Conclusions 

 

8.1 Overview 

This Chapter provides a summary of the thesis and an evaluation based on the criteria 

specified in Chapter 1.  Suggestions are also made for future work in this area.   As 

outlined in Chapter 1 this thesis considers the impact phase of road vehicle collisions 

and has three main aims  

 To quantify factors affecting accuracy of DeltaV and predicted speeds 

 To determine the relevance and accuracy of energy adjustment factors in 

CRASH calculations  

 To develop a method to determine actual vehicle velocities from DeltaV values 

These aims have been discussed in depth throughout the body of the thesis.  The main 

finding of this work are summarised in the next sections.  Of note throughout this work 

is that CRASH can be viewed as two separate algorithms.  The first is an algorithm to 

estimate the amount of work done in causing crush damage (crush energy).  The 

second part of the algorithm uses the crush energy estimates to determine DeltaV.  

The two algorithms are described in detail in Chapter 2.   

Since the estimation of crush energy and the overall accuracy of the CRASH algorithm 

depends crucially on crush damage measurements, Chapter 3 contains details of 

measuring protocols which can be used to consistently measure that damage.   
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8.2 Equivalence of impact phase models 

It has been shown that the momentum models of Brach [11] and Ishikawa [43] which 

do not utilise the conservation of energy are equivalent and differ mainly in the way in 

which tangential sliding is treated.  Both models make use of an impact plane in their 

specification to partition the impulse into normal and tangential components. Chapter 2 

explains how Brach uses an effective tangential sliding coefficient of friction µ whereas 

Ishikawa utilises a second coefficient of restitution et.  Ishikawa identified that there was 

an explicit conversion between µ and et.  The two momentum models also use 

somewhat different coefficients. Conversion between µ and et and between the various 

coefficients can be achieved using the equations listed in Appendix C. 

If the impact plane is orientated so that it is perpendicular to the impulse then the 

tangential impulse component vanishes.  With this orientation Chapter 2 shows that 

second part of the CRASH algorithm is also equivalent to the momentum only models.   

It is shown that the second part of the CRASH algorithm uses only conservation laws 

as described by Smith [105] and provides a new model to allow for tangential 

restitution.  This is an important result since it shows that any perceived differences 

and inaccuracies of the CRASH model as compared to the momentum models do not 

lie in the second part of the CRASH algorithm.  Any differences and inaccuracies can 

only be due to the first part of the algorithm where the crush damage is estimated. The 

consequent dependence on accuracy to the first part of the CRASH algorithm 

motivates the discussion on measuring protocols detailed in Chapter 3. 

 

8.3 Energy adjustment factors 

As shown in Chapter 3 the measuring process requires that the crush measurements 

are made perpendicular to the damaged face of the vehicle.  The raw crush energy 

values obtained from these measurements are then transformed into values suitable as 

input to the second part of the algorithm.  This is achieved through the use of energy 

adjustment factors which effectively scale the raw crush energy into suitable estimates.  

The nature and effect of the energy adjustment factors are described in Chapter 4.  It 

should be noted that the energy adjustment factors only affect the first part of CRASH 

algorithm where the estimates of crush damage are made.   

Methods are detailed which allow the crush energy to be estimated using the 

momentum models.  This permits a comparison to be made between the estimates of 
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crush energy obtained by measurement and theoretical values obtained from the 

momentum models.  It is shown that the standard energy adjustment factor as 

described by McHenry [65] does not produce results consistent with the momentum 

models.  Similarly other adjustment factors proposed by Fonda [31] or a later revision 

by McHenry [66] also do not provide results consistent with the momentum models.  An 

alternative adjustment factor is derived in Chapter 4 which does provide a scale factor 

which matches energy values obtained from the momentum models.  In essence this 

new method partitions the crush energy into two terms, one produced by the 

component of the impulse perpendicular to the damaged surface and the other by the 

component of the impulse which is tangential to the surface. 

The new adjustment factor requires an estimate to be made of the angle between the 

pre-impact velocity vectors of the two vehicles (closing velocity angle).  It also takes 

into account restitution both parallel and perpendicular to the damaged surface.  It is 

recognised that this information may not be readily available which may reduce the 

utility of the new adjustment factor.  This shortcoming is addressed in Chapter 7 where 

a method to determine the pre-impact velocities of the vehicles is developed.   This 

information does then allow for the closing velocity angle to be determined. 

Chapter 4 also details a new method whereby the two coefficients of restitution en and 

et used by the impact phase models can be transformed to different orientations of the 

impact plane.  The new energy adjustment factor requires such a conversion to 

transform coefficients of restitution parallel and perpendicular to the impulse to their 

equivalent values perpendicular and parallel to the impact surface.  In addition this 

transformation may prove useful more generally whenever converting between different 

orientations of the impact plane.    

  

8.4 Theoretical accuracy of CRASH 

Chapters 5 and 6 describe a detailed discussion concerning the overall accuracy of the 

CRASH algorithm.  Chapter 5 discusses accuracy from a theoretical viewpoint whereas 

Chapter 6 contains details of a Monte Carlo simulation designed to explore overall 

accuracy and the effect of uncertainty in the CRASH input parameters 

These analyses show that front to side (FTS) impacts are inherently less accurate and 

therefore produce a greater range of overall uncertainty than front to front (FTF) or front 
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to rear (FTR) impacts.  Some of the input parameters respond in a non-linear manner 

such as uncertainty in crush depth or PDOF.  As a result it has not been possible to 

determine a simple guide to indicate overall uncertainty from any one parameter.  

Utilising typical uncertainties matching those of Smith and Noga [108] as listed in Table 

5.2, overall uncertainty in DeltaV is found to be about 15 – 17% for front to side 

impacts.  This reduces to around 9 – 12% for front to front or front to rear impacts.  The 

largest individual contribution is that due to uncertainty in PDOF.  A reduction in this 

one parameter therefore is likely to have the greatest overall effect.  Reducing 

uncertainty in the PDOF to ±10° reduces overall uncertainty to 13 – 15% for front to 

side impacts and 8 – 10% for end to end impacts. 

A careful analysis of one of the standard data sets has shown that this behaviour is due 

to the significantly larger length of the side of a vehicle when compared with its width.  

However this analysis is based on a relatively small data set with only two or three test 

collisions in each category.  Nevertheless larger data sets are not expected to produce 

significantly different results.   

The analytical model produces results which are comparable to the Monte Carlo 

method.  It is clear too that the two methods produce closer results if uncertainty in 

PDOF is minimised.  A method for reducing the uncertainty in PDOF is discussed in 

Chapter 7.  

 

8.5 Determining actual vehicle speeds  

A new technique is developed in Chapter 7 which permits the actual speeds of vehicles 

involved in a collision to be determined from the changes in velocity which each vehicle 

sustains as a result of that collision.  This is a significant new result based on the 

assumptions of the CRASH algorithm.  However it should be noted that this method is 

equally applicable to any technique which provides change in velocity data.  The new 

method takes into account the effects of restitution both parallel and tangentially to the 

impulse and as such should be applicable to the majority of vehicle to vehicle 

collisions.   

This new method cannot be used however where the angle between the closing 

velocities is either zero or 180° as the solution relies upon the sine of this angle in the 

denominator leading to a singularity in the solution equations.  At angles close to zero 
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or 180° the results become very sensitive to the exact angle and any results should be 

treated with caution. 

The determination of vehicle pre-impact velocities with knowledge of the changes in 

velocity means that the post impact velocities can also be determined.  Using an 

iterative process the PDOF values for each vehicle can be refined so that the desired 

post impact trajectories are achieved.  This too is a significant development in forensic 

collision investigation as it enables a better estimate to be made of the PDOFs which 

traditionally have been difficult to estimate.  It is found that even small variations in 

PDOF (around 0.1°) can produce significant changes in the post-impact trajectories so 

that estimates of PDOF to within ±1° are possible. 

The new technique to estimate pre-impact speeds was applied to the RICSAC series of 

test collisions.  Using the standard energy adjustment factor discussed in Chapter 4 it 

was found that the new method produced results which underestimated DeltaV by 

about 2% with a standard deviation of 6.4%  

The new energy adjustment factor was also applied to the RICSAC collisions and 

compared with the standard adjustment factor.  Using the new factor produced a 

slightly better correspondence with actual pre-impact speeds with an average error of 

less than 0.2% with a standard deviation of 5.5%.  This shows that a combination of the 

new techniques to estimate pre-impact speeds, coupled with the new adjustment factor 

may yield an estimate of pre-impact speeds with a 95% confidence interval of about 

±11%.   

 

8.6 Evaluation  

In Chapter 1 a series of specific objectives were formulated by which this research 

could be evaluated.  For convenience these are addressed in turn 

Determine how the various impact phase models are interrelated 

Chapter 2 shows how the impact phase models considered by this research are 

related.  The two momentum models of Brach [11] and Ishikawa [43] are shown 

to be equivalent.  The relationship of the momentum models to the CRASH 

model developed by McHenry [65] is also established.  That is, if the impact 
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plane required by the models of Brach and Ishikawa is orientated so that it is 

perpendicular to the impulse, then all three models produce identical results.  

So that consistency can be achieved, describe a systematic method to determine crush 

damage profiles 

Chapter 3 provides a consolidated set of measuring protocols.  Although many 

of the techniques are addressed elsewhere, there is not a single document 

summarising them or their application.  In particular a new technique for 

measuring severely bowed vehicles is presented.   

Determine whether the energy adjustment factor commonly used by CRASH accurately 

models reality.  If not, determine whether there an alternative adjustment factor which 

can be utilised or developed 

These objectives are considered in Chapter 4.  A number of energy adjustment 

factors have been proposed in addition to the standard factor proposed by 

McHenry [65].  None of these factors produce total crush energy values which 

correspond to the loss of energy predicted by the momentum only models of 

Brach [11] and Ishikawa [43].  An alternative energy adjustment factor is 

developed and evaluated which does produce crush energy results which 

match those predicted by the momentum models.   

Determine the overall accuracy that can be expected from CRASH analyses 

This aspect is considered in Chapters 5 and 6.  Overall accuracy is found to be 

dependent on the impact type.  For example, front to side impacts are 

inherently less accurate than front to front or front to end impacts.   

Determine the most significant factors affecting the accuracy of CRASH 

The most significant factor affecting the accuracy of CRASH is the requirement 

for user estimated values for the principal direction of force (PDOF).  

Uncertainty in the PDOF is typically in the order of ±20°.  Such a level of 

uncertainty in the PDOF accounts for some 52% of the total uncertainty in the 

overall result.  
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Ascertain whether it is possible to determine the actual velocities of vehicles from 

DeltaV values 

Chapter 7 describes the development of a new technique which allows the 

determination of actual pre- and post-impact velocities from an analysis of the 

changes in velocity sustained by each of the vehicles in a collision.  This 

technique is applicable to the majority of vehicle to vehicle collisions.  When 

compared to the results of a series of test collisions the new technique is able to 

predict the actual pre-impact speeds with a 95% confidence interval of ±11%.  

This is comparable to the accuracy obtained with many of the other techniques 

used in forensic collision investigation. 

Describe techniques which can be used or developed to reduce uncertainty in the most 

significant factors affecting accuracy  

Chapter 7 presents a new technique which can be used to refine an initial 

estimate of the PDOFs.  Matching the post-impact trajectories predicted by the 

determination of actual speeds algorithm, enables the initial estimate of the 

PDOF to be adjusted thereby significantly reducing the uncertainty in the 

estimate of PDOF.  Small changes in the PDOF estimates can have a large 

effect on the post impact trajectories which means that potential uncertainty in 

the PDOF can be reduced to less than ±1°. 

 

8.7 Limitations of findings 

The investigation has demonstrated the accuracy of CRASH from a theoretical and 

experimental viewpoint.  However, the study was restricted by a relatively small sample 

of collisions (mainly the RICSAC series of tests), covering a limited range of collision 

typologies.  The CRASH algorithm can be viewed as two separate techniques; the first 

to establish an estimate of the work done in causing deformation and the second to 

calculate the change in velocity.  The study has clearly evaluated the relative 

importance of the factors applied to the second part of the model.  For the first part, the 

work done is significantly affected by the accuracy of the residual crush measurements 

and the stiffness coefficient values (A and B). These were considered for the test data 

available.  However, it is possible that the A and B values used over-simplify the force-

crush relationship for a modern vehicle, where a non-linear response may be observed 
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for some cars.  The assessment of this was beyond the practicable scope of this study, 

largely because of the data restrictions. 

 

8.8 Recommendations for future work 

The validation of the theoretical models developed as part of this thesis is based on a 

relatively small sample of test collisions, mainly those from the RICSAC series of tests.  

A study using a more extensive series of tests would yield more detail of the likely 

accuracy of the CRASH algorithm.  It would also provide additional information which 

may help to refine the details of the analytical and Monte Carlo models presented here. 

The new energy adjustment factor described in Chapter 4 has been validated for a 

range of scenarios  Further work would assist in determining the validity of its use in a 

wider range of collisions.  Chapter 4 considered some collisions where the new 

adjustment factor generated results which matched those from the momentum models 

of Brach [11] and Ishikawa [43].  The technique was applied to the RICSAC tests, a 

standard data set, with considerable success.  There are few if any other data set 

available.  The production and publication of other data sets would enable a wider 

investigation of all the models discussed here. Additional work in this area is desirable.   
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Appendix A: Solution Equations of Planar Impact Mechanics (PIM) 

The planar impact mechanics model is discussed in section 2.3.  Brach [11] shows that the 

solution to this model can be expressed as 
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Appendix B: Solution Equations For Ishikawa’s Model 

Ishikawa‟s impact model is discussed in section 2.4.  Ishikawa [43] and [42] shows that the 

solution to this model can be expressed as 

 

 

02

0

02

0

1
(1 ) (1 ) ,

(1 )

1
(1 ) (1 )

(1 )

n n Rn n n t Rt t

n t

t t Rt t n t Rn n

n t

P m U e m m m U e
m m m

P mU e m m m U e
m m m

   


   


 

where en and et can be found from 

,       Rn n Rn Rt t RtV e U V eU   

  

The relative speeds of the point of application of the impulse are defined as  

2 2 2 1 1 1

2 2 2 1 1 1

2 2 2 1 1 1

2 2 2 1 1 1

Rn n n

Rn n n

Rt t t t t

Rt t t t t

U u h u h

V v h v h

U u h u h

V v h v h

 

 

   

     

   

     
 

The mass ratios used extensively by Ishikawa are defined as 
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Appendix C: Conversion between PIM and Ishikawa’s Models 

PIM by Brach [11] and the impact model by Ishikawa [43] are shown to be equivalent in Chapter 

2.  The equivalence between the various coefficients used by each of these model is 

summarised below 
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Appendix D: Raw RICSAC Test Data (From Jones & Baum [51]) 

This data forms the raw source data used by several analyses in this thesis and is introduced in Chapter 5.   

Test.Veh L D c1 c2 c3 c4 c5 c6 A B Cg to F Cg to R Length Width Mass Inertia 

 
(cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (N/cm) (N/cm

2
) (cm) (cm) (cm) (cm) (kg) (kgm

2
) 

1.1 117 36 10 14 18 26 31 38 624 23 251 290 541 196 2096 5054 

1.2 288 55 1 30 27 30 23 10 246 46 212 233 444 171 1398 2659 

2.1 192 0 1 6 9 18 30 42 624 23 251 290 541 196 2096 5054 

2.2 301 35 17 58 60 54 25 0 246 46 212 233 444 171 1397 2658 

3.1 76 56 5 5 4 4 5 6 624 23 251 290 541 196 2244 5413 

3.2 76 13 17 17 15 13 10 8 684 28 212 233 444 171 1415 2692 

4.1 105 41 16 20 25 32 38 46 624 23 251 290 541 196 2259 5447 

4.2 106 -23 91 81 74 61 50 38 684 28 212 233 444 171 1447 2752 

5.1 85 52 4 4 5 5 6 7 624 23 251 290 541 196 2086 5031 

5.2 135 -4 91 93 80 58 34 15 641 26 193 213 406 154 1147 1484 

6.1 138 25 1 1 3 4 4 6 624 23 251 290 541 196 1950 4703 

6.2 196 -8 10 30 45 49 43 21 246 46 212 233 444 171 1190 2263 

7.1 168 10 0 3 5 10 13 16 624 23 251 290 541 196 1678 4047 

7.2 276 -22 0 28 45 53 54 20 246 46 212 233 444 171 771 1467 

8.1 185 0 7 9 0 0 0 0 624 23 251 290 541 196 2031 4899 

8.2 215 38 16 21 23 15 11 2 251 35 251 290 541 196 2136 5152 

9.1 126 4 13 15 32 19 19 24 528 32 193 213 406 154 1023 1323 

9.2 138 173 20 12 12 8 7 4 251 35 251 290 541 196 2222 5359 

10.1 121 -7 18 26 36 23 23 23 528 32 193 213 406 154 1046 1352 

10.2 135 169 23 17 15 13 11 1 251 35 251 290 541 196 2141 5162 

11.1 83 -32 56 51 47 43 38 32 454 30 212 233 444 171 1379 2624 

11.2 82 -33 75 67 58 47 36 28 624 23 251 290 541 196 2200 5305 

12.1 81 7 98 88 75 66 50 36 454 30 212 233 444 171 1420 2700 

12.2 72 -27 100 84 73 60 49 38 624 23 251 290 541 196 2046 4935 



Appendices  Jon Neades 

179 

Appendix E: RICSAC Results from raw Jones & Baum [51] data using AiDamage [74]  

This appendix shows the impact configurations, PDOF and DeltaV results from the raw 

(unadjusted) RICSAC test data as described in Chapter 5 and listed in Appendix D.  Note that 

the zero entries for pre-impact motion in the AiDamage results merely indicate that this 

calculation was not performed. 

 

RICSAC 1 Base
(Damage based)

Total Delta-V:

Longitudinal Delta-V:

Lateral Delta-V:

Angular velocity change:

Energy dissapated:

Magnitude of force

Force direction:

Pre-impact motion

Total speed:

Longitudinal component:

Lateral component:

Sideslip:

Veh 1

6.20

-5.37

3.10

237.41

45.17

154.67

-30.00

0.00

0.00

0.00

0.00

Veh 2

9.29

-8.05

-4.65

99.48

102.89

716.43

30.00

0.00

0.00

0.00

0.00

m/s

m/s

m/s

deg/s

kJ

kN

deg

m/s

m/s

m/s

deg

 

RICSAC 1 Base
(Impact attitude)

 

 

RICSAC 2 Base
(Damage based)

Total Delta-V:

Longitudinal Delta-V:

Lateral Delta-V:

Angular velocity change:

Energy dissapated:

Magnitude of force

Force direction:

Pre-impact motion

Total speed:

Longitudinal component:

Lateral component:

Sideslip:

Veh 1

10.34

-8.96

5.17

373.92

61.43

225.92

-30.00

0.00

0.00

0.00

0.00

Veh 2

15.51

-13.43

-7.75

211.12

344.43

1286.51

30.00

0.00

0.00

0.00

0.00

m/s

m/s

m/s

deg/s

kJ

kN

deg

m/s

m/s

m/s

deg

RICSAC 2 Base
(Impact attitude)
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RICSAC 3 Base
(Damage based)

Total Delta-V:

Longitudinal Delta-V:

Lateral Delta-V:

Angular velocity change:

Energy dissapated:

Magnitude of force

Force direction:

Pre-impact motion

Total speed:

Longitudinal component:

Lateral component:

Sideslip:

Veh 1

2.79

-2.79

0.00

37.47

8.82

55.96

0.00

0.00

0.00

0.00

0.00

Veh 2

4.43

4.36

-0.77

42.05

15.67

81.65

170.00

0.00

0.00

0.00

0.00

m/s

m/s

m/s

deg/s

kJ

kN

deg

m/s

m/s

m/s

deg

 

RICSAC 3 Base
(Impact attitude)

 

RICSAC 4 Base
(Damage based)

Total Delta-V:

Longitudinal Delta-V:

Lateral Delta-V:

Angular velocity change:

Energy dissapated:

Magnitude of force

Force direction:

Pre-impact motion

Total speed:

Longitudinal component:

Lateral component:

Sideslip:

Veh 1

7.05

-7.05

0.06

87.25

39.23

137.11

-0.50

0.00

0.00

0.00

0.00

Veh 2

11.00

10.85

-1.82

206.84

128.61

273.06

170.50

0.00

0.00

0.00

0.00

m/s

m/s

m/s

deg/s

kJ

kN

deg

m/s

m/s

m/s

deg

RICSAC 4 Base
(Impact attitude)

 

RICSAC 5 Base
(Damage based)

Total Delta-V:

Longitudinal Delta-V:

Lateral Delta-V:

Angular velocity change:

Energy dissapated:

Magnitude of force

Force direction:

Pre-impact motion

Total speed:

Longitudinal component:

Lateral component:

Sideslip:

Veh 1

6.89

-6.89

0.00

92.78

10.05

63.09

0.00

0.00

0.00

0.00

0.00

Veh 2

12.54

12.35

-2.18

276.12

153.47

316.33

170.00

0.00

0.00

0.00

0.00

m/s

m/s

m/s

deg/s

kJ

kN

deg

m/s

m/s

m/s

deg

 

RICSAC 5 Base
(Impact attitude)
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RICSAC 6 Base
(Damage based)

Total Delta-V:

Longitudinal Delta-V:

Lateral Delta-V:

Angular velocity change:

Energy dissapated:

Magnitude of force

Force direction:

Pre-impact motion

Total speed:

Longitudinal component:

Lateral component:

Sideslip:

Veh 1

6.97

-6.04

3.49

265.68

19.39

111.71

-30.00

0.00

0.00

0.00

0.00

Veh 2

11.43

-9.90

-5.72

196.25

169.58

756.66

30.00

0.00

0.00

0.00

0.00

m/s

m/s

m/s

deg/s

kJ

kN

deg

m/s

m/s

m/s

deg

RICSAC 6 Base
(Impact attitude)

 

 

RICSAC 7
(Damage based)

Total Delta-V:

Longitudinal Delta-V:

Lateral Delta-V:

Angular velocity change:

Energy dissapated:

Magnitude of force

Force direction:

Pre-impact motion

Total speed:

Longitudinal component:

Lateral component:

Sideslip:

Veh 1

8.84

-7.66

4.42

330.08

31.47

155.34

-30.00

0.00

0.00

0.00

0.00

Veh 2

19.25

-16.67

-9.62

324.45

267.59

1099.85

30.00

0.00

0.00

0.00

0.00

m/s

m/s

m/s

deg/s

kJ

kN

deg

m/s

m/s

m/s

deg

RICSAC 7
(Impact attitude)
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RICSAC 8
(Damage based)

Total Delta-V:

Longitudinal Delta-V:

Lateral Delta-V:

Angular velocity change:

Energy dissapated:

Magnitude of force

Force direction:

Pre-impact motion

Total speed:

Longitudinal component:

Lateral component:

Sideslip:

Veh 1

4.84

-4.19

2.42

146.22

34.81

173.38

-30.00

0.00

0.00

0.00

0.00

Veh 2

4.60

-2.30

-3.99

29.89

28.27

199.27

60.00

0.00

0.00

0.00

0.00

m/s

m/s

m/s

deg/s

kJ

kN

deg

m/s

m/s

m/s

deg

RICSAC 8
(Impact attitude)

 

RICSAC 9
(Damage based)

Total Delta-V:

Longitudinal Delta-V:

Lateral Delta-V:

Angular velocity change:

Energy dissapated:

Magnitude of force

Force direction:

Pre-impact motion

Total speed:

Longitudinal component:

Lateral component:

Sideslip:

Veh 1

6.32

-5.47

3.16

272.37

37.85

174.51

-30.00

0.00

0.00

0.00

0.00

Veh 2

2.91

-1.45

-2.52

-62.99

10.16

96.70

60.00

0.00

0.00

0.00

0.00

m/s

m/s

m/s

deg/s

kJ

kN

deg

m/s

m/s

m/s

deg

RICSAC 9
(Impact attitude)

 

RICSAC 10
(Damage based)

Total Delta-V:

Longitudinal Delta-V:

Lateral Delta-V:

Angular velocity change:

Energy dissapated:

Magnitude of force

Force direction:

Pre-impact motion

Total speed:

Longitudinal component:

Lateral component:

Sideslip:

Veh 1

7.08

-2.99

6.42

500.78

68.99

386.54

-65.00

0.00

0.00

0.00

0.00

Veh 2

3.46

-3.13

-1.46

12.96

21.82

233.29

25.00

0.00

0.00

0.00

0.00

m/s

m/s

m/s

deg/s

kJ

kN

deg

m/s

m/s

m/s

deg

RICSAC 10
(Impact attitude)
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RICSAC 11
(Damage based)

Total Delta-V:

Longitudinal Delta-V:

Lateral Delta-V:

Angular velocity change:

Energy dissapated:

Magnitude of force

Force direction:

Pre-impact motion

Total speed:

Longitudinal component:

Lateral component:

Sideslip:

Veh 1

9.33

-9.30

-0.73

-142.41

44.89

147.75

4.50

0.00

0.00

0.00

0.00

Veh 2

5.85

-5.83

0.46

-30.01

61.60

150.95

-4.50

0.00

0.00

0.00

0.00

m/s

m/s

m/s

deg/s

kJ

kN

deg

m/s

m/s

m/s

deg

 

RICSAC 11
(Impact attitude)

 

 

RICSAC 12
(Damage based)

Total Delta-V:

Longitudinal Delta-V:

Lateral Delta-V:

Angular velocity change:

Energy dissapated:

Magnitude of force

Force direction:

Pre-impact motion

Total speed:

Longitudinal component:

Lateral component:

Sideslip:

Veh 1

11.74

-11.70

-0.92

-45.24

90.69

205.08

4.50

0.00

0.00

0.00

0.00

Veh 2

8.15

-8.12

0.64

-29.66

76.60

157.37

-4.50

0.00

0.00

0.00

0.00

m/s

m/s

m/s

deg/s

kJ

kN

deg

m/s

m/s

m/s

deg

 

RICSAC 12
(Impact attitude)
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Appendix F: RICSAC Results from adjusted data using AiDamage [74]  

This appendix shows the impact configurations, PDOF and DeltaV results from the adjusted 

RICSAC test data as described in Chapter 5.  The pre and post-impact vectors showing motion 

of the vehicles‟ centres of mass are also shown, superimposed on the impact configuration 

diagrams.  Note that as in Appendix F, the zero entries for pre-impact motion in the AiDamage 

results merely indicate that this calculation was not performed. 

RICSAC 1 v2 -10cm
(Damage based)

Total Delta-V:

Longitudinal Delta-V:

Lateral Delta-V:

Angular velocity change:

Energy dissapated:

Magnitude of force

Force direction:

Pre-impact motion

Total speed:

Longitudinal component:

Lateral component:

Sideslip:

Veh 1

5.26

-5.16

1.03

117.77

35.23

136.60

-11.30

0.00

0.00

0.00

0.00

Veh 2

7.88

-5.20

-5.92

35.16

48.35

342.71

48.70

0.00

0.00

0.00

0.00

m/s

m/s

m/s

deg/s

kJ

kN

deg

m/s

m/s

m/s

deg

 

RICSAC 1 v2 -10cm
(Impact attitude)

 

 

 

RICSAC 2  v2 -15cm
(Damage based)

Total Delta-V:

Longitudinal Delta-V:

Lateral Delta-V:

Angular velocity change:

Energy dissapated:

Magnitude of force

Force direction:

Pre-impact motion

Total speed:

Longitudinal component:

Lateral component:

Sideslip:

Veh 1

8.37

-8.19

1.70

170.35

48.05

199.80

-11.70

0.00

0.00

0.00

0.00

Veh 2

12.55

-8.35

-9.37

135.79

165.20

611.18

48.30

0.00

0.00

0.00

0.00

m/s

m/s

m/s

deg/s

kJ

kN

deg

m/s

m/s

m/s

deg

 

RICSAC 2  v2 -15cm
(Impact attitude)
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RICSAC 3 V1 +5 cm V2 offset -50
(Damage based)

Total Delta-V:

Longitudinal Delta-V:

Lateral Delta-V:

Angular velocity change:

Energy dissapated:

Magnitude of force

Force direction:

Pre-impact motion

Total speed:

Longitudinal component:

Lateral component:

Sideslip:

Veh 1

3.03

-2.93

-0.74

-3.92

12.59

66.85

14.10

0.00

0.00

0.00

0.00

Veh 2

4.80

4.79

0.34

56.09

15.28

80.62

-175.90

0.00

0.00

0.00

0.00

m/s

m/s

m/s

deg/s

kJ

kN

deg

m/s

m/s

m/s

deg

 

RICSAC 3 V1 +5 cm V2 offset -50
(Impact attitude)

 

RICSAC 4 v2 -15cm
(Damage based)

Total Delta-V:

Longitudinal Delta-V:

Lateral Delta-V:

Angular velocity change:

Energy dissapated:

Magnitude of force

Force direction:

Pre-impact motion

Total speed:

Longitudinal component:

Lateral component:

Sideslip:

Veh 1

6.59

-6.46

-1.27

6.04

40.73

139.72

11.10

0.00

0.00

0.00

0.00

Veh 2

10.28

10.28

0.20

88.25

88.10

224.59

-178.90

0.00

0.00

0.00

0.00

m/s

m/s

m/s

deg/s

kJ

kN

deg

m/s

m/s

m/s

deg

 

RICSAC 4 v2 -15cm
(Impact attitude)

 

RICSAC 5 -20cm
(Damage based)

Total Delta-V:

Longitudinal Delta-V:

Lateral Delta-V:

Angular velocity change:

Energy dissapated:

Magnitude of force

Force direction:

Pre-impact motion

Total speed:

Longitudinal component:

Lateral component:

Sideslip:

Veh 1

5.90

-5.78

-1.19

7.80

10.47

64.41

11.60

0.00

0.00

0.00

0.00

Veh 2

10.74

10.73

0.30

97.45

94.16

242.52

-178.40

0.00

0.00

0.00

0.00

m/s

m/s

m/s

deg/s

kJ

kN

deg

m/s

m/s

m/s

deg

 

RICSAC 5 -20cm
(Impact attitude)
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RICSAC 6 -15cm
(Damage based)

Total Delta-V:

Longitudinal Delta-V:

Lateral Delta-V:

Angular velocity change:

Energy dissapated:

Magnitude of force

Force direction:

Pre-impact motion

Total speed:

Longitudinal component:

Lateral component:

Sideslip:

Veh 1

5.20

-5.10

0.99

108.83

15.09

98.55

-11.00

0.00

0.00

0.00

0.00

Veh 2

8.52

-5.59

-6.43

117.95

67.68

328.19

49.00

0.00

0.00

0.00

0.00

m/s

m/s

m/s

deg/s

kJ

kN

deg

m/s

m/s

m/s

deg

 

RICSAC 6 -15cm
(Impact attitude)

 

RICSAC 7 -20cm
(Damage based)

Total Delta-V:

Longitudinal Delta-V:

Lateral Delta-V:

Angular velocity change:

Energy dissapated:

Magnitude of force

Force direction:

Pre-impact motion

Total speed:

Longitudinal component:

Lateral component:

Sideslip:

Veh 1

6.06

-5.91

1.33

133.32

24.80

137.90

-12.70

0.00

0.00

0.00

0.00

Veh 2

13.19

-8.94

-9.69

186.45

91.76

438.30

47.30

0.00

0.00

0.00

0.00

m/s

m/s

m/s

deg/s

kJ

kN

deg

m/s

m/s

m/s

deg

 

RICSAC 7 -20cm
(Impact attitude)
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RICSAC 8 e=0.3
(Damage based)

Total Delta-V:

Longitudinal Delta-V:

Lateral Delta-V:

Angular velocity change:

Energy dissapated:

Magnitude of force

Force direction:

Pre-impact motion

Total speed:

Longitudinal component:

Lateral component:

Sideslip:

Veh 1

6.55

-6.14

2.29

140.82

29.75

160.31

-20.50

0.00

0.00

0.00

0.00

Veh 2

6.23

-2.18

-5.84

18.66

24.16

184.24

69.50

0.00

0.00

0.00

0.00

m/s

m/s

m/s

deg/s

kJ

kN

deg

m/s

m/s

m/s

deg

 

RICSAC 8 e=0.3
(Impact attitude)

 

RICSAC 9 v2 -10cm e=0.3
(Damage based)

Total Delta-V:

Longitudinal Delta-V:

Lateral Delta-V:

Angular velocity change:

Energy dissapated:

Magnitude of force

Force direction:

Pre-impact motion

Total speed:

Longitudinal component:

Lateral component:

Sideslip:

Veh 1

6.65

-6.18

2.47

232.02

17.77

118.66

-21.80

0.00

0.00

0.00

0.00

Veh 2

3.06

-1.14

-2.84

-82.16

8.84

90.20

68.20

0.00

0.00

0.00

0.00

m/s

m/s

m/s

deg/s

kJ

kN

deg

m/s

m/s

m/s

deg

 

RICSAC 9 v2 -10cm e=0.3
(Impact attitude)

 

RICSAC 10 v2 +10cm e=0.3
(Damage based)

Total Delta-V:

Longitudinal Delta-V:

Lateral Delta-V:

Angular velocity change:

Energy dissapated:

Magnitude of force

Force direction:

Pre-impact motion

Total speed:

Longitudinal component:

Lateral component:

Sideslip:

Veh 1

10.85

-9.81

4.64

334.60

42.20

180.69

-25.30

0.00

0.00

0.00

0.00

Veh 2

5.30

-2.26

-4.79

-134.60

27.21

155.68

64.70

0.00

0.00

0.00

0.00

m/s

m/s

m/s

deg/s

kJ

kN

deg

m/s

m/s

m/s

deg

 

RICSAC 10 v2 +10cm e=0.3
(Impact attitude)
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RICSAC 11
(Damage based)

Total Delta-V:

Longitudinal Delta-V:

Lateral Delta-V:

Angular velocity change:

Energy dissapated:

Magnitude of force

Force direction:

Pre-impact motion

Total speed:

Longitudinal component:

Lateral component:

Sideslip:

Veh 1

9.73

-9.72

0.49

-77.15

44.73

147.48

-2.90

0.00

0.00

0.00

0.00

Veh 2

6.10

-5.97

1.26

11.04

63.94

153.79

-11.90

0.00

0.00

0.00

0.00

m/s

m/s

m/s

deg/s

kJ

kN

deg

m/s

m/s

m/s

deg

 

RICSAC 11
(Impact attitude)

 

 

RICSAC 12
(Damage based)

Total Delta-V:

Longitudinal Delta-V:

Lateral Delta-V:

Angular velocity change:

Energy dissapated:

Magnitude of force

Force direction:

Pre-impact motion

Total speed:

Longitudinal component:

Lateral component:

Sideslip:

Veh 1

15.95

-15.95

-0.28

-31.08

155.25

352.12

1.00

0.00

0.00

0.00

0.00

Veh 2

11.07

-10.96

1.54

-18.76

151.37

308.92

-8.00

0.00

0.00

0.00

0.00

m/s

m/s

m/s

deg/s

kJ

kN

deg

m/s

m/s

m/s

deg

 

RICSAC 12
(Impact attitude)
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Appendix G: Partial Derivatives.  Evaluated symbolically using Mathcad V.13 

The potential accuracy of CRASH is discussed in Chapter 5.  As part of the analysis to 

determine the accuracy, the partial derivatives of the equations used to determine crush energy 

and CRASH are required.  These are detailed in this Appendix. 

Partial derivatives for the crush energy equation (from Singh [99]) 

2( 1)

1 2 6 2
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Partial derivatives of standard energy adjustment factor (from McHenry [65]) 

2(1 tan )nE E   . 

This produces the two partial derivatives  

2

2 2

1 tan ,

2sec tan 2 tan (1 tan ).

n

E

E

E



   



 




  



 

Partial derivatives of CRASH equation (from McHenry [65] and amended by Smith [105]) 
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where  

2

2
1 ,

h

k
  

 
sin( ).h d   

 

This produces the series of partial derivatives for each parameter as follows 
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1 2 2 1 1 2

2

1 1 2 2 1 1 1 2 2 11

2 2 1 2

1 1 2 2 1
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Appendix H: Analytical Mathcad Model to Determine Uncertainty in Δv (RICSAC 8) 

An analytical model to determine the uncertainty in DeltaV is developed in Chapter 5.  The 

listing below is the Mathcad implementation of that model.  Note that the green highlighting 

indicates user input sections, blue highlighting indicates where uncertainty can be adjusted and 

yellow indicates key output sections.  

 

 

 

 

 

 

 

 

CRASH Analytical Error Analysis for RICSAC8 

Standard error factor to convert 95% confidence limits to standard deviation: 

 

Part I: Calculation of Crush Energy 

Measurement Data 

Vehicle 1 Vehicle 2 

  

 (7.62cm is equivalent to 3 inches) 

  

  

 (15.24cm is equivalent to 6 inches) 

  

Stiffness Coefficients 

 (Permits simple adjustment of all coefficients) 

  

  

    

  

  

    

StdErr 1.96

C1

6.9

7.34

7.78

8.22

8.66

9.1



















 C2

15.7

21.1

23.4

15

11.2

2





















C 7.62

c
C

StdErr
 c 3.888

L1 185.4 L2 214.6

L 15.24

L
L

StdErr
 L 7.776

Coeff 10%

A1 623.5 A2 250.5

A1 Coeff A1 A2 Coeff A2

A1
A1

StdErr
 A1 31.811 A2

A2

StdErr
 A2 12.781

B1 23.3 B2 34.8

B1 Coeff B1 B2 Coeff B2

B1
B1

StdErr
 B1 1.189 B2

B2

StdErr
 B2 1.776
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Derived values 

 

  

 
 

  

  

  (Common value for both vehicles) 

 

 

Note multiplier of 1/100 to convert to joules 

 

  

  

  

  

  

  

  

 

 

 

i 0 4

1

i

C1
i

C1
i 1

  2

i

C2
i

C2
i 1

 

2 159.1
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1

i

C1
i 

2
C1

i
C1

i 1
 C1

i 1 
2





 2

i

C2
i 

2
C2

i
C2

i 1
 C2

i 1 
2
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0

4 C1
1

 C1
2

 
2

 C1
1

4 C1
2

 C1
3

 
2



C1
2

4 C1
3

 C1
4

 
2

C1
3

4 C1
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 C1
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4
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5

 
2

 2 C2
5

 C2
4
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n 6

E1 0.01
n 1( ) A1

2


2 B1

B11

6


A1 1

2










L1

n 1










 E2 0.01
n 1( ) A2

2


2 B2

B22

6


A2 2

2










L2

n 1












E1 2.611 10
4

 E2 2.12 10
4



dA1
1

5
5

A1

B1


1

2
1









L1 dA2
1

5
5

A2

B2


1

2
2









L2

dB1
1

5

5

2

A1
2

B1
2


1

6
1











L1 dB2
1

5

5

2

A2
2

B2
2


1

6
2











L2

dL1
1

2

A1
2

B1


1

30
B1 1

1

10
A1 1 dL2

1

2

A2
2

B2


1

30
B2 2

1

10
A2 2

d1
1

10
A1 L1 d2

1

10
A2 L2

d1
1

30
B1 L1 d2

1

30
B2 L2

1 396.841

2 850.255
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Potential Error Calculations 

  

 

 

  

 

 

    

Analysis of Energy Calculations 

  

    

  

    

  

    

  

    

  

    

  

  

E1 0.01 dA1
2
A1

2
 dB1

2
B1

2
 dL1

2
L

2
 d1

2


2
 d1

2
1

2
 E1 E1 StdErr

E1 3.13 10
3



E1 6.134 10
3



E2 0.01 dA2
2
A2

2
 dB2

2
B2

2
 dL2

2
L

2
 d2

2


2
 d2

2
2

2
 E2 E2 StdErr

E2 2.47 10
3



E2 4.841 10
3



Ratio1
E1

E1
 Ratio1 23.497% Ratio2

E2

E2
 Ratio2 22.835%

errA1 1.960.01 dA1
2
A1

2
 errA2 1.960.01 dA2

2
A2

2


RerrA1
errA1

E1
 RerrA1 15.392% RerrA2

errA2

E2
 RerrA2 5.86%

errB1 1.960.01 dB1
2
B1

2
 errB2 1.960.01 dB2

2
B2

2


RerrB1
errB1

E1
 RerrB1 % RerrB2

errB2

E2
 RerrB2 4.14%

errL1 1.960.01 dL1
2
L

2
 errL2 1.960.01 dL2

2
L

2


RerrL1
errL1

E1
 RerrL1 8.22% RerrL2

errL2

E2
 RerrL2 7.102%

err1 1.960.01 d1
2


2
 err2 1.960.01 d2

2


2


Rerr1
err1

E1
 Rerr1 14.315% Rerr2

err2

E2
 Rerr2 8.198%

err1 1.960.01 d1
2
1

2
 err2 1.960.01 d2

2
2

2


Rerr1
err1

E1
 Rerr1 3.693% Rerr2

err2

E2
 Rerr2 18.771%

t1 RerrA1
2

RerrB1
2

 RerrL1
2

 Rerr1
2

 Rerr1
2

 t2 RerrA2
2

RerrB2
2

 RerrL2
2

 Rerr2
2

 Rerr2
2



t1 23.497% t2 22.835%
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Energy Adjustment 

  

Principal Directions of Force (PDOF) 
(Base Side: 0=Front, 90=right, 180=rear, 270=left) 

  

  

  

  

  

  

  

  

  

  

  

  

BaseSide1 0 BaseSide2 90

PDOF1 30 PDOF2 60

PDOF 20

PDOF
PDOF

StdErr
 PDOF 10.204

1 PDOF1 BaseSide1 2 PDOF2 BaseSide2

1 30 2 30

CF1 1 tan 1


180










2

 CF2 1 tan 2


180










2



CF1 1.333 CF2 1.333

d1 2 tan 1


180










1 tan 1


180










2











 d2 2 tan 2


180










1 tan 2


180










2













d1 0.449 d2 0.449

CF1 d1
2

PDOF


180










2

 CF2 d2
2

PDOF


180










2



CF1 0.08 CF2 0.08

EC1 E1 CF1 EC2 E2 CF2

EC1 3.481 10
4

 EC2 2.827 10
4



dE1 CF1 dE2 CF2

dCF1 E1 dCF2 E1

EC1 dE1
2
E1

2
 dCF1

2
CF1

2
 EC2 dE2

2
E2

2
 dCF2

2
CF2

2


EC1 4.665 10
3

 EC2 3.898 10
3
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Part II: Calculation of DeltaV 

1 and 2 

  

 
 

 

  

Angle defined so that lateral variation is equal to d 

    

    

  

  

  

  

  

  

  

 

 

 

 

1 0.985572 2 77.4466

d2 0.911634
d1 2.47011

d
7.62

100


d
d

StdErr
 d 0.039

1
180


asin

d

d1









 1 1.768 2
180


asin

d

d2









 2 4.795

1
1

StdErr
 1 0.902 2

2

StdErr
 2 2.446

h1 d1 sin PDOF1 1  

180










 h2 d2 sin PDOF2 2  

180












h1 1.272 h2 0.273

dd1 sin PDOF1 1  

180










 dd2 sin PDOF2 2  

180












dd1 0.515 dd2 0.3

d1 d1 cos PDOF1 1  

180










 d2 d2 cos PDOF2 2  

180












d1 2.118 d2 0.87

dPDOF1 d1 dPDOF2 d2

h1 dd1 d 
2

dPDOF1PDOF


180










2

 d1 1


180










2



h1 0.379

h2 dd2 d 
2

dPDOF2PDOF


180










2

 d2 2


180










2



h2 0.16
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Mass  

  

 

  

Coefficient of Restitution 

 

 

  

Nominal Mean DeltaV and Variance 

  

  

k1 1.55307 k2 1.55298

k 0.1

k
k

StdErr
 k 0.051

1 1
h1

2

k1
2

 1 1.67 2 1
h2

2

k2
2

 2 1.031

1
1

1
 1 0.599 2

1

2
 2 0.97

dk1 2
h1

2

k1
3

 dk1 0.863 dk2 2
h2

2

k2
3

 dk2 0.04

dh1 2
h1

k1
2

 dh1 1.054 dh2 2
h2

k2
2

 dh2 0.227

1 dk1 k 
2

dh1 h1 
2

 2 dk2 k 
2

dh2 h2 
2



1 0.402 2 0.036

m1 2031 m2 2136

m 50

m
m

StdErr
 m 25.51

ep 0.0

ep 0.0

ep
ep

StdErr
 ep 0

v1
2 m2 EC1 EC2( ) 1 ep( )

m1 m12 m21  1 ep( )
 v2 v1

m1

m2


v1 6.553 v2 6.231
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dm1

m2( ) EC1 EC2( )
1 ep

m1
2

m12 m21  1 ep( )

 m2 EC1 EC2( )
1 ep

m1 m12 m21 2 1 ep( )

 2








2 m2 EC1 EC2( ) 1 ep( )

m1 m12 m21  1 ep( )









1

2



dm1 1.632 10
3



dm2

EC1 EC2( )
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m1 m12 m21  1 ep( )
 m2 EC1 EC2( )

1 ep

m1 m12 m21 2 1 ep( )

1








2 m2 EC1 EC2( ) 1 ep( )

m1 m12 m21  1 ep( )









1

2



dm2 4.19 10
4



dEC1

m2
1 ep

m1 m12 m21  1 ep( )


2 m2 EC1 EC2( ) 1 ep( )

m1 m12 m21  1 ep( )









1

2



dEC1 3.837 10
5



dEC2
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2 m2 EC1 EC2( ) 1 ep( )
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1
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dEC2 3.837 10
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d1
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2

EC1 EC2( )
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2 m2 EC1 EC2( ) 1 ep( )

m1 m12 m21  1 ep( )
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d2
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2 m2 EC1 EC2( ) 1 ep( )
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1
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d2 0.868
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dep

m2
EC1 EC2

m1 m12 m21  1 ep( )
 m2 EC1 EC2( )

1 ep

m1 m12 m21  1 ep( )
2












2 m2 EC1 EC2( ) 1 ep( )

m1 m12 m21  1 ep( )









1

2



dep 4.841

v1 dm1
2
m

2
 dm2

2
m

2
 dEC1

2
EC1

2
 dEC2

2
EC2

2
 d1

2
1

2
 d2

2
2

2
 dep

2
ep

2


v1 v1 StdErr

v1 0.438

v1 0.859

dm11
v1

m2
 dm11 2.266 10

3


dm12 v1  m1

m2
2

 dm12 2.155 10
3



d1v1
m1

m2
 d1v1 0.951

v2 dm11
2
m

2
 dm12

2
m

2
 d1v1

2
v1

2


v2 v2 StdErr

v2 0.424

v2 0.832

Ratiov1
v1

v1
 Ratiov1 17.748% Ratiov2

v2

v2
 Ratiov2 18.07%
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Appendix I: Analysis of contributions to overall uncertainty in individual input parameters 

These results are derived from the analytical model (Appendix H) using raw input data from RICSAC tests (Appendix D) and discussed in 

Chapter 5. Results have been arranged so that similar impact configurations are grouped together. 

Table I.1: Overall result and uncertainty in Δv1 and Δv2 

Overall uncertainty generated using 95% confidence limits on parameters as described by Smith & Noga [108] 

Collision Type 60° Front to side 90° Front to side 10° Front to front 10° Front to rear 

Test number 1 6 7 8 9 10 11 12 3 4 5 

Δv1 (m/s) 5.256 5.196 6.059 6.553 6.652 10.947 9.729 15.949 3.026 6.588 5.903 

Δv2 (m/s) 7.881 8.521 13.187 6.231 3.063 5.299 6.101 11.07 4.799 10.284 10.735 

Uncertainty Δv1 % 22.853 28.486 28.536 19.088 23.333 22.144 10.728 6.354 14.541 9.723 9.917 

Uncertainty Δv2 % 23.098 28.909 29.415 19.388 23.945 22.774 11.55 7.665 15.129 10.553 11.095 

 

Table I.2: Effect of uncertainty in crush measurements δC on Δv1 and Δv2 (%) 

Collision Type 60° Front to side 90° Front to side 10° Front to front 10° Front to rear 

Test number 1 6 7 8 9 10 11 12 3 4 5 

±0.01 m 1.013 1.057 1.054 0.826 0.947 0.626 0.327 0.27 0.613 0.332 0.417 

±0.05 m 5.067 5.285 5.272 4.129 4.735 3.131 1.635 1.349 3.065 1.66 2.084 

±0.0762 m 7.723 8.054 8.034 6.293 7.216 4.771 2.494 2.054 4.672 2.531 3.176 

±0.10 m 10.135 10.57 10.543 8.259 9.469 6.262 3.269 2.698 6.13 3.32 4.169 
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Table I.3: Effect of uncertainty in damage length measurements δL on Δv1 and Δv2 (%) 

Collision Type 60° Front to side 90° Front to side 10° Front to front 10° Front to rear 

Test number 1 6 7 8 9 10 11 12 3 4 5 

±0.01 m 0.21 0.219 0.156 0.182 0.29 0.291 0.437 0.253 0.47 0.355 0.339 

±0.05 m 1.03 1.096 0.781 0.909 1.451 1.455 2.185 1.263 2.33 1.776 1.697 

±0.10 m 2.07 2.192 1.563 1.818 2.902 2.909 4.37 2.526 4.66 3.552 3.394 

±0.15 m 3.1 3.287 2.344 2.727 4.353 4.364 6.55 3.788 6.99 5.328 5.091 

±0.1524 m 3.148 3.34 2.382 2.771 4.422 4.434 6.66 3.849 7.104 5.413 5.173 

±0.20 m 4.13 4.383 3.126 3.636 5.803 5.818 8.74 5.051 9.32 7.103 6.788 

 

 

Table I.4: Effect of uncertainty in mass measurements δm on Δv1 (%) 

Collision Type 60° Front to side 90° Front to side 10° Front to front 10° Front to rear 

Test number 1 6 7 8 9 10 11 12 3 4 5 

±10 kg 0.41 0.473 0.642 0.362 0.65 0.647 0.507 0.506 0.426 0.417 0.488 

±25 kg 1.02 1.182 1.606 0.905 1.626 1.618 1.267 1.266 1.066 1.044 1.219 

±50 kg 2.05 2.363 3.211 1.811 3.252 3.237 2.534 2.532 2.132 2.087 2.438 

±100 kg 4.1 4.727 6.423 3.622 6.504 6.473 5.068 5.064 4.263 4.174 4.875 
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Table I.5: Effect of uncertainty in mass measurements δm on Δv2 (%) 

Collision Type 60° Front to side 90° Front to side 10° Front to front 10° Front to rear 

Test number 1 6 7 8 9 10 11 12 3 4 5 

±10 kg 0.95 1.093 1.565 0.77 1.257 1.245 0.995 0.996 0.938 0.921 1.108 

±25 kg 2.38 2.731 3.913 1.925 3.144 3.114 2.487 2.489 2.345 2.302 2.77 

±50 kg 4.76 5.463 7.826 3.85 6.287 6.277 4.974 4.978 4.69 4.604 5.54 

±100 kg 9.52 10.926 15.652 7.699 12.574 12.455 9.947 9.956 9.38 9.208 11.08 

 

 

Table I.6: Effect of uncertainty in PDOF measurements δPDOF on Δv1 and Δv2 (%) 

Collision Type 60° Front to side 90° Front to side 10° Front to front 10° Front to rear 

Test number 1 6 7 8 9 10 11 12 3 4 5 

±1° 1.046 1.337 1.342 0.804 1.006 0.99 0.356 0.144 0.521 0.338 0.329 

±5° 5.23 6.686 6.708 4.018 5.032 4.949 1.782 0.721 2.604 1.688 1.646 

±10° 10.6 13.372 13.416 8.035 10.065 9.898 3.563 1.441 5.209 3.376 3.291 

±15° 15.7 20.057 20.124 12.053 15.097 14.847 5.345 2.162 7.813 5.064 4.937 

±20° 20.9 26.743 26.832 16.071 20.13 19.796 7.126 2.882 10.417 6.752 6.583 

±25° 26.1 33.429 33.54 20.089 25.162 24.745 8.908 3.603 13.022 8.44 8.228 
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Table I.7: Effect of uncertainty in position of point of application δd on Δv1 and Δv2 (%) 

Collision Type 60° Front to side 90° Front to side 10° Front to front 10° Front to rear 

Test number 1 6 7 8 9 10 11 12 3 4 5 

±0.01 m 0.14 0.171 0.174 0.165 0.296 0.277 0.084 0.023 0.12 0.089 0.1 

±0.05 m 0.7 0.857 0.873 0.824 1.479 1.385 0.42 0.117 0.598 0.446 0.502 

±0.0762 m 1.081 1.307 1.33 1.256 2.255 2.111 0.64 0.178 0.911 0.68 0.765 

±0.10 m 1.4 1.716 1.747 1.648 2.959 2.771 0.84 0.234 1.196 0.892 1.004 

±0.20 m 2.8 3.445 3.508 3.299 5.925 5.55 1.682 0.469 2.394 1.786 2.012 

 

 

Table I.8: Effect of uncertainty in radii of gyration δk on Δv1 and Δv2 (%) 

Collision Type 60° Front to side 90° Front to side 10° Front to front 10° Front to rear 

Test number 1 6 7 8 9 10 11 12 3 4 5 

±0.01 m 0.01 0.078 0.077 0.095 0.206 0.173 0.016 0.001 0.034 0.018 0.018 

±0.05 m 0.41 0.391 0.387 0.476 1.03 0.863 0.079 0.005 0.168 0.092 0.09 

±0.10 m 0.82 0.782 0.774 0.952 2.06 1.727 0.159 0.011 0.336 0.184 0.18 

±0.20 m 1.65 1.565 1.549 1.903 4.119 3.454 0.318 0.022 0.67 0.368 0.361 
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Table I.9: Effect of uncertainty in A stiffness coefficient δA on Δv1 and Δv2 (%) 

Collision Type 60° Front to side 90° Front to side 10° Front to front 10° Front to rear 

Test number 1 6 7 8 9 10 11 12 3 4 5 

±5% 1.33 1.073 1.061 2.223 2.065 1.256 1.098 0.809 2.419 1.293 1.473 

±10% 2.67 2.146 2.122 4.445 4.13 2.511 2.195 1.619 4.839 2.587 2.947 

±15% 3.998 3.22 3.184 6.668 6.195 3.767 3.293 2.428 7.258 3.88 4.42 

±20% 5.33 4.293 4.245 8.891 8.259 5.022 4.39 3.237 9.678 5.173 5.894 

 

 

Table I.10: Effect of uncertainty in B stiffness coefficient δB on Δv1 and Δv2 (%) 

Collision Type 60° Front to side 90° Front to side 10° Front to front 10° Front to rear 

Test number 1 6 7 8 9 10 11 12 3 4 5 

±5% 0.72 1.388 1.314 0.877 0.336 0.636 0.717 0.996 0.657 0.65 0.855 

±10% 1.44 2.776 2.682 1.753 0.672 1.272 1.435 1.992 1.314 1.301 1.709 

±15% 2.16 4.164 3.942 2.63 1.008 1.909 2.152 2.988 1.971 1.951 2.564 

±20% 2.87 5.553 5.257 3.507 1.344 2.545 2.869 3.984 2.628 2.602 3.419 
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Table I.11: Overall uncertainty in Δv1 and Δv2 (Constrained adjustment factor 

Overall uncertainty generated using 95% confidence levels described by Smith & Noga [108] and adjustment factor limited to 2 

Collision Type 60° Front to side 

Test number 1 6 7 

Δv1 (m/s) 5.256 5.196 6.059 

Δv2 (m/s) 7.881 8.521 13.187 

Uncertainty Δv1 % 14.636 14.645 12.742 

Uncertainty Δv2 % 15.254 15.451 14.605 

 

Table I.12: Effect of uncertainty in PDOF measurements δPDOF on Δv1 and Δv2 (%) (Constrained adjustment factor) 

Collision Type 60° Front to side 

Test number 1 6 7 

±1° 1.046 1.377 1.342 

±5° 4.642 6.213 3.844 

±10° 6.676 7.568 5.404 

±15° 9.108 9.402 7.297 

±20° 11.619 11.487 9.323 

±25° 14.344 13.71 11.41 
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Appendix J: Mathcad Monte Carlo Model to Determine Uncertainty in Δv (RICSAC 8) 

The Monte Carlo model to determine the uncertainty in DeltaV is developed in Chapter 6.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Monte Carlo Simulation for RICSAC 8 

Standard error factor to convert 95% confidence limits to standard deviation: 

 

Minimum value for uncertainty [using a small positive value avoids error in Mathcad function rnorm(...)]: 

 

Calculation of Crush Energy 

Measurement Data 

Vehicle 1 Vehicle 2 

 

 

 (7.62cm is equivalent to 3 inches) 

  

Damage Length (L) 

  

 (15.24cm is equivalent to 6 inches) 

  

Mass  

  

 

  

  

  

Coefficient of Restitution 

 

 

StdErr 1.96

minE 1 10
15



C2

15.7

21.1

23.4

15

11.2

2





















C 7.62

c
C

StdErr
 c 3.888

L1 185.4 L2 214.6

L 15.24

L
L

StdErr
 L 7.776

m1 2031 m2 2136

m 50

m
m

StdErr
 m 25.51

MaxM1 m1 m MaxM2 m2 m

MinM1 m1 m MinM2 m2 m

ep 0.3

ep 0.05

C1

6.9

7.34

7.78

8.22

8.66

9.1





















ep
ep

StdErr
 ep 0.026
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Principal Directions of Force (PDOF) 
(Base Side: 0=Front, 90=right, 180=rear, 270=left) 

  

  

 

  

  

  

1 and 2 data 

  

  

 

  

  

 

  

Stiffness Coefficients 

 
(Permits simultaneous adjustment of both coefficients) 

 

  

  

    

  

  

    

  

  

  

  

BaseSide1 0 BaseSide2 90

PDOF1 20.5 PDOF2 69.5

PDOF 20

PDOF
PDOF

StdErr
 PDOF 10.204

MaxPDOF1 PDOF1 PDOF MaxPDOF2 PDOF2 PDOF

MinPDOF1 PDOF1 PDOF MinPDOF2 PDOF2 PDOF

1 0.985572 2 77.4466

d1 2.47011 d2 0.911634

d
10

100


d
d

StdErr
 d 0.051

k1 1.55307 k2 1.55298

k 0.1

k
k

StdErr
 k 0.051

ACoeff 10%

BCoeff 10%

A1 623.5 A2 250.5

A1 ACoeff A1 A2 ACoeff A2

A1
A1

StdErr
 A1 31.811 A2

A2

StdErr
 A2 12.781

B1 23.3 B2 34.8

B1 BCoeff B1 B2 BCoeff B2

B1
B1

StdErr
 B1 1.189 B2

B2

StdErr
 B2 1.776

MaxA1 A1 A1 MaxA2 A2 A2

MinA1 A1 A1 MinA2 A2 A2

MaxB1 B1 B1 MaxB2 B2 B2

MinB1 B1 B1 MinB2 B2 B2
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Energy Range Calculations 

Using variation in A & B Coefficients only, ie ignoring crush and PDOF variation 

 

  

 
 

  

  

  

  

  

  

  

  

  

  

i 0 4

1

i

C1
i

C1
i 1

  2

i

C2
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C2
i 1

 

2 159.1
1 80
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MaxE1 E1

E1
 pRawRangeE1 10%

pRawRangeE2
MaxE2 E2
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Energy Adjustment Calculations 

(Ensures that energy adjustment factor never exceeds 2 as per CRASH) 

  

  

  

  

  

  

  

  

  

  

    

Position of centroid calculations  

Angle  defined so that lateral variation is equal to d 

    

    

  

  

Gamma & Delta calculations 

    

    

CF1 min 2 1 tan PDOF1 BaseSide1( )


180










2











 CF1 1.14

CF2 min 2 1 tan PDOF2 BaseSide2( )


180










2











 CF2 1.14

MaxCF1 max CF1 min 2 1 tan MinPDOF1 BaseSide1( )
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2





















 MaxCF1 1.729

MaxCF2 max CF2 min 2 1 tan MinPDOF2 BaseSide2( )


180










2





















 MaxCF2 1.729

MinCF1 min CF1 MaxCF1 min 2 1 tan MaxPDOF1 BaseSide1( )


180










2





















 MinCF1 1

MinCF2 min CF2 MaxCF2 min 2 1 tan MaxPDOF2 BaseSide2( )


180










2





















 MinCF2 1

EC1 E1 CF1 EC2 E2 CF2

EC1 2.975 10
4

 EC2 2.416 10
4



MaxEC1 MaxE1MaxCF1 MaxEC2 MaxE2MaxCF2

MinEC1 MinE1MinCF1 MinEC2 MinE2MinCF2

RangeEC1
MaxEC1 EC1

EC1
 RangeEC1 66.908% RangeEC2

MaxEC2 EC2

EC2
 RangeEC2 66.908%

1
180


asin

d

d1









 1 2.32 2
180


asin
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1
1

StdErr
 1 1.184 2
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StdErr
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h1 0.905 h2 0.126

1 1
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1
1

1
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2
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Mean, Minimum and Maximum Results  

Nominal Mean V  

  

  

Maximum v 

  

  

Minimum v 

  

  

Difference and Range  

    

    

v1
2 m2 EC1 EC2( ) 1 ep( )

m1 m12 m21  1 ep( )
 v2 v1

m1

m2


v1 6.553 v2 6.231

Maxv1
2 m2 MaxEC1 MaxEC2( ) 1 ep( )

m1 m12 m21  1 ep( )
 Maxv2 Maxv1

m1

m2


Maxv1 8.466 Maxv2 8.05

Minv1
2 m2 MinEC1 MinEC2( ) 1 ep( )

m1 m12 m21  1 ep( )
 Minv2 Minv1

m1

m2


Minv1 5.823 Minv2 5.537

MaxDiff Maxv1 v1 MaxDiff 1.913 pMaxDiff
MaxDiff

v1
 pMaxDiff 29.193%

MinDiff v1 Minv1 MinDiff 0.73 pMinDiff
MinDiff

v1
 pMinDiff 11.136%
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Probability Calculations  

(Assuming normal distribution of source data) 

Number of data points: 

  

Function to generate random distribution about mean value v with standard deviation sd truncated 
to maximum variation of l.  Prevents occurrence of values outside range v - sd*l to v + sd*l 

 

Function to generate random distribution about mean value v with standard deviation sd truncated at  
lower end to zero and upper end to 2*v Prevents occurrence of values outside range 0 to 2*v 

 

Crush Dimensions 

  

  

Seed Seed 5( )( ) n 10000

RNormLimn v sd l( ) ret rnorm n v sd( )

e ret
i

 ret
i

v sd l( ) ret
i

v sd l( )if

e rnd 2 sd l( ) v sd l otherwise

ret
i

e

i 0 last ret( )for

ret



RNormZero data v sd( ) ret rnorm n v sd( )

e ret
i

 ret
i

2 v( ) ret
i

0( )if

e rnd 2 v( ) otherwise

ret
i

e

i 0 last ret( )for

ret



C11

RNormZero n C1
0

 c 
RNormZero n C1

1
 c 

RNormZero n C1
2

 c 
RNormZero n C1

3
 c 

RNormZero n C1
4

 c 
RNormZero n C1

5
 c 

























 C22

RNormZero n C2
0

 c 
RNormZero n C2

1
 c 

RNormZero n C2
2

 c 
RNormZero n C2

3
 c 

RNormZero n C2
4

 c 
RNormZero n C2

5
 c 



























VecL1 rnorm n L1 L  VecL2 rnorm n L2 L 
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Mass  

  

    

    

Stiffness Coefficients 

  

  

  

  

    

    

    

    

Calculation of PDOF 

  

  

    

    

Energy Adjustment Factor 

Standard unlimited adjustment factor calculation 

  

Function to provide random adjustment factors limited to a maximum value lim 

 

Vecm1 rnorm n m1 m  Vecm2 rnorm n m2 m 

maxm1 max Vecm1( ) maxm1 2.133 10
3

 maxm2 max Vecm2( ) maxm2 2.253 10
3



minm1 minVecm1( ) minm1 1.938 10
3

 minm2 minVecm2( ) minm2 2.039 10
3



VecA1 RNormLimn A1 A1 1.96  VecA2 RNormLimn A2 A2 1.96 

VecB1 RNormLimn B1 B1 1.96  VecB2 RNormLimn B2 .B2 1.96 

VecA1 rnorm n A1 A1  VecA2 rnorm n A2 A2 

VecB1 rnorm n B1 B1  VecB2 rnorm n B2 B2 

maxA1 maxVecA1( ) maxA1 768.712 maxA2 maxVecA2( ) maxA2 295.097

minA1 min VecA1( ) minA1 491.828 minA2 min VecA2( ) minA2 204.35

maxB1 maxVecB1( ) maxB1 27.601 maxB2 maxVecB2( ) maxB2 42.645

minB1 min VecB1( ) minB1 18.468 minB2 min VecB2( ) minB2 27.977

VecPDOF1 RNormLimn PDOF1 PDOF 2  VecPDOF2 RNormLimn PDOF2 PDOF 1.96 

VecPDOF1 rnorm n PDOF1 PDOF  VecPDOF2 rnorm n PDOF2 PDOF 

minPDOF1 min VecPDOF1( ) minPDOF1 59.385 minPDOF2 min VecPDOF2( ) minPDOF2 33.699

maxPDOF1 maxVecPDOF1( ) maxPDOF1 16.499 maxPDOF2 maxVecPDOF2( ) maxPDOF2 113.005

VecCF1 1 tan VecPDOF1 BaseSide1( )


180










2













 VecCF2 1 tan VecPDOF2 BaseSide2( )


180










2















MaxLimCFpdf side lim( ) ret 1 tan pdf side( )


180










2















e ret
i

 ret
i

limif

e rnd 1( ) 1 otherwise

ret
i

e

i 0 last ret( )for

ret
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Moment arm calculations 

  

    

    

  

    

    

  

    

    

Gamma & Delta calculations 

  

  

  

    

    

Coefficient of Restitution 

 

VecCF1 MaxLimCFVecPDOF1BaseSide1 2( ) VecCF2 MaxLimCFVecPDOF2BaseSide2 2( )

minCF1 minVecCF1( ) minCF1 1 minCF2 minVecCF2( ) minCF2 1

maxCF1 max VecCF1( ) maxCF1 3.856 maxCF2 max VecCF2( ) maxCF2 3.248

Vecd1 rnorm n d1 d  Vecd2 rnorm n d2 d 

mind1 minVecd1( ) mind1 2.291 mind2 minVecd2( ) mind2 0.721

maxd1 max Vecd1( ) maxd1 2.66 maxd2 max Vecd2( ) maxd2 1.095

Vec1 rnorm n 1 1  Vec2 rnorm n 2 1 

min1 minVec1  min1 5.934 min2 minVec2  min2 81.823

max1 maxVec1  max1 3.487 max2 maxVec2  max2 72.772

Vech1 Vecd1 sin VecPDOF1 Vec1  

180





















 Vech2 Vecd2 sin VecPDOF2 Vec2  

180























minh1 minVech1( ) minh1 2.208 minh2 minVech2( ) minh2 0.649

maxh1 max Vech1( ) maxh1 0.68 maxh2 max Vech2( ) maxh2 0.529

Veck1 rnorm n k1 k  Veck2 rnorm n k2 k 

Vec1 1
Vech1

2

Veck1
2














 Vec2 1
Vech2

2

Veck2
2
















Vec1
1

Vec1



 Vec2
1

Vec2





min1 minVec1  min1 0.314 min2 minVec2  min2 0.846

max1 maxVec1  max1 1 max2 maxVec2  max2 1

Vece rnorm n ep ep 
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Calculation of Energy 
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dataVecE1 histogram 100 VecE1( )
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Energy Adjustment 

  

 

  

  

  

 

  

  

  

  

  

  

  

VecEC1 VecE1 VecCF1( )


 VecEC2 VecE2 VecCF2( )




dataVecEC1 histogram 100 VecEC1( )

minEC1 minVecEC1( ) minEC1 1.587 10
4



maxEC1 max VecEC1( ) maxEC1 1.03 10
5



MeanEC1 mean VecEC1( ) MeanEC1 3.16 10
4
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dataVecEC1
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RangeVecEC1 maxEC1 MeanEC1 RangeVecEC1 7.144 10
4



DeviationEC1 stdev VecEC1( ) DeviationEC1 6.767 10
3



Prob95EC1 DeviationEC11.96 Prob95EC1 1.326 10
4



Prob99EC1 DeviationEC12.576 Prob99EC1 1.743 10
4



pRangeEC1
RangeEC1

MeanEC1
 pRangeEC1 2.117 10

3
 %

pProb95EC1
Prob95EC1

MeanEC1
 pProb95EC1 41.964%

pProb99EC1
Prob99EC1

MeanEC1
 pProb99EC1 55.153%
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Probability Results 

  

Vehicle 1 Analysis 

 

  

  

  

   

 

  

   

 

   

 
  

  

 

Vecv1
2 Vecm2 VecEC1 VecEC2( ) 1 ep( )

Vecm1 Vecm1Vec2 Vecm2Vec1  1 ep( )



 Vecv2 Vecv1
Vecm1

Vecm2














data histogram 100 Vecv1 

minv1 minVecv1  minv1 5.356

maxv1 maxVecv1  maxv1 10.677

Meanv1 mean Vecv1  Meanv1 6.659

Rangev1 maxv1 Meanv1 Rangev1 4.018 pRangev1
Rangev1

Meanv1


pRangev1 60.333%

Deviationv1 Stdev Vecv1  Deviationv1 0.431

Prob95v1 Deviationv1 1.96 Prob95v1 0.845 pProb95v1
Prob95v1

Meanv1


pProb95v1 12.688%

Prob99v1 Deviationv1 2.576 Prob99v1 1.11 pProb99v1
Prob99v1

Meanv1


pProb99v1 16.676%

Kurtosis1 kurt Vecv1  Kurtosis1 1.513

Skew1 skew Vecv1  Skew1 0.543
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Vehicle 2 Analysis 

 

  

  

  

   

 

  

   

 

   

 
  

  

 

data2 histogram 100 Vecv2 

minv2 minVecv2  minv2 5.102

maxv2 maxVecv1  maxv2 10.677

Meanv2 mean Vecv1  Meanv2 6.659

Rangev2 maxv2 Meanv2 Rangev2 4.018 pRangev2
Rangev2

Meanv2


pRangev2 60.333%

Deviationv2 Stdev Vecv2  Deviationv2 0.409

Prob95v2 Deviationv2 1.96 Prob95v2 0.802 pProb95v2
Prob95v2

Meanv2


pProb95v2 12.05%

Prob99v2 Deviationv2 2.576 Prob99v2 1.055 pProb99v2
Prob99v2

Meanv2


pProb99v2 15.838%

Kurtosis2 kurt Vecv2  Kurtosis2 1.194
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Appendix K: Monte Carlo simulation data and results  

Results for head-on into rigid barrier collision.  These results are derived from the Monte Carlo 

model shown in Appendix J and are discussed in Chapter 6.   

 

Table K.1: Nominal values for single vehicle into barrier simulations 

Parameter Vehicle 1 Barrier 

C1 to C6 0.1, 0.2, 0.4 m - 

L 1.35 m - 

m 1332 kg 1020 kg 

PDOF 0° 0° 

d 1.86 m 1 m 

 0° 0° 

k 1.426 m 1020 m 

A 362 N/cm - 

B 48.3 N/cm2 - 

 

Table K.2: Overall result and uncertainty in Δv1 and Δv2 

Using 95% confidence limits on parameters as described by Smith & Noga [108] 

Collision Type Head-on into barrier 

Test 0.1 m 0.2 m 0.4 m 

Δv1 (m/s) 3.871 6.083 10.508 

Uncertainty Δv1 % 19.093 13.741 9.976 

 

 

Table K.3: Effect of uncertainty in crush measurements δC (%) 

Collision Type Head-on into barrier 

 Test 0.1 m 0.2 m 0.4 m 

±0.01 m 2.427 1.54 0.893 

±0.05 m 12.016 7.735 4.408 

±0.0762 m 17.453 11.864 6.707 

±0.10 m 20.801 15.264 8.808 
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Table K.4: Effect of uncertainty in damage length measurements δL (%) 

Collision Type Head-on into barrier 

 Test 0.1 m 0.2 m 0.4 m 

±0.01 m 0.368 0.377 0.486 

±0.05 m 1.84 1.859 1.856 

±0.10 m 3.694 3.691 3.719 

±0.15 m 5.569 5.554 5.545 

±0.1524 m 5.642 5.624 5.634 

±0.20 m 7.47 7.45 7.402 

 

 

Table K.5: Effect of uncertainty in mass measurements δm (%) 

Collision Type Head-on into barrier 

 Test 0.1 m 0.2 m 0.4 m 

±10 kg 0.377 0.37 0.372 

±25 kg 0.933 0.943 0.941 

±50 kg 1.877 1.883 1.891 

±100 kg 3.724 3.792 3.827 

 

 

Table K.6: Effect of uncertainty in PDOF measurements δPDOF  (%) 

Collision Type Head-on into barrier 

 Test 0.1 m 0.2 m 0.4 m 

±1° 0.008 0.008 0.008 

±5° 0.177 0.186 0.185 

±10° 0.669 0.672 0.673 

±15° 1.265 1.241 1.249 

±20° 1.768 1.765 1.756 

±25° 2.126 2.089 2.111 
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Table K.7: Effect of uncertainty in position of point of application δd (%) 

Collision Type Head-on into barrier 

 Test 0.1 m 0.2 m 0.4 m 

±0.01 m 0.002 0.002 0.002 

±0.05 m 0.045 0.044 0.045 

±0.10 m 0.176 0.178 0.176 

±0.20 m 0.704 0.708 0.71 

 

 

Table K.8: Effect of uncertainty in radii of gyration δk (%) 

No individual effect on uncertainty due to zero rotation using nominal values. 

 

 

Table K.9: Effect of uncertainty in A stiffness coefficient δA (%) 

Collision Type Head-on into barrier 

 Test 0.1 m 0.2 m 0.4 m 

±5% 2.133 1.351 0.787 

±10% 4.254 2.74 1.566 

±15% 6.505 4.084 2.34 

±20% 8.657 5.494 3.185 

 

 

Table K.10: Effect of uncertainty in B stiffness coefficient δB (%) 

Collision Type Head-on into barrier 

 Test 0.1 m 0.2 m 0.4 m 

±5% 0.358 1.144 1.704 

±10% 0.716 2.27 3.418 

±15% 1.063 3.396 5.132 

±20% 1.405 4.495 6.868 
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Appendix L:  Analysis of contributions to overall uncertainty in individual input parameters 

These results are derived from the Mathcad model (Appendix K) using raw input data from RICSAC tests (Appendix D). Results have been 

arranged so that similar impact configurations are grouped together. 

Table L.1: Overall result and uncertainty in Δv1 and Δv2 

Overall uncertainty generated using 95% confidence limits on parameters as described by Smith & Noga [108] 

Collision Type 60° Front to side 90° Front to side 10° Front to front 10° Front to rear 

Test number 1 6 7 8 9 10 11 12 3 4 5 

Δv1 (m/s) 5.256 5.196 6.059 6.553 6.652 10.947 9.729 15.949 3.026 6.588 5.903 

Δv2 (m/s) 7.881 8.521 13.187 6.231 3.063 5.299 6.101 11.07 4.799 10.284 10.735 

Uncertainty Δv1 % 26.81 32.806 34.014 12.788 17.359 16.424 10.897 7.025 14.81 10.01 10.517 

Uncertainty Δv2 % 26.798 32.847 34.127 12.833 17.256 16.291 10.798 6.916 14.904 10.133 10.702 

 

Table L.2: Effect of uncertainty in crush measurements δC on Δv1 and Δv2 (%) 

Collision Type 60° Front to side 90° Front to side 10° Front to front 10° Front to rear 

Test number 1 6 7 8 9 10 11 12 3 4 5 

±0.01 m 1.29 1.242 1.248 1.04 1.285 0.811 0.42 0.327 0.823 0.443 0.536 

±0.05 m 6.365 6.223 6.249 5.254 6.487 4.101 2.127 1.65 4.044 2.247 2.696 

±0.0762 m 9.688 9.39 9.432 7.852 9.782 6.228 3.196 2.511 6.124 3.374 4.082 

±0.10 m 12.508 12.276 12.3 10.375 12.725 8.151 4.247 3.309 8.106 4.412 5.408 
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Table L.3: Effect of uncertainty in damage length measurements δL on Δv1 and Δv2 (%) 

Collision Type 60° Front to side 90° Front to side 10° Front to front 10° Front to rear 

Test number 1 6 7 8 9 10 11 12 3 4 5 

±0.01 m 0.205 0.22 0.159 0.186 0.297 0.298 0.446 0.258 0.461 0.362 0.335 

±0.05 m 1.03 1.093 0.788 0.915 1.463 1.466 2.187 1.271 2.324 1.778 1.678 

±0.10 m 2.101 2.183 1.553 1.822 2.913 2.919 4.351 2.526 4.66 3.538 3.409 

±0.15 m 3.106 3.307 2.348 2.716 4.334 4.346 6.621 3.779 6.898 5.29 4.032 

±0.1524 m 3.153 3.366 2.398 2.777 4.391 4.409 6.706 3.852 7.111 5.386 5.122 

±0.20 m 4.135 4.358 3.091 3.605 5.77 5.781 8.708 5.007 9.357 7.106 6.843 

 

 

Table L.4: Effect of uncertainty in mass measurements δm on Δv1 (%) 

Collision Type 60° Front to side 90° Front to side 10° Front to front 10° Front to rear 

Test number 1 6 7 8 9 10 11 12 3 4 5 

±10 kg 0.408 0.468 0.638 0.363 0.653 0.65 0.501 0.508 0.426 0.417 0.487 

±25 kg 1.028 1.202 1.591 0.898 1.643 1.607 1.278 1.256 1.056 1.031 1.288 

±50 kg 2.047 2.37 3.202 1.803 3.242 3.226 2.521 2.522 2.124 2.103 2.433 

±100 kg 4.097 4.708 6.356 3.579 6.572 6.418 5.054 5.01 4.274 4.169 4.866 
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Table L.5: Effect of uncertainty in mass measurements δm on Δv2 (%) 

Collision Type 60° Front to side 90° Front to side 10° Front to front 10° Front to rear 

Test number 1 6 7 8 9 10 11 12 3 4 5 

±10 kg 0.537 0.609 0.873 0.391 0.497 0.493 0.431 0.667 0.489 0.485 0.594 

±25 kg 1.351 1.544 2.193 0.982 1.264 1.232 1.104 1.09 1.203 1.203 1.496 

±50 kg 2.704 3.051 4.456 1.987 2.517 2.484 2.179 2.202 2.451 2.44 2.954 

±100 kg 5.367 6.064 8.834 3.928 5.026 4.924 4.307 4.356 4.845 4.855 5.899 

 

 

Table L.6: Effect of uncertainty in PDOF measurements δPDOF on Δv1 and Δv2 (%) 

Collision Type 60° Front to side 90° Front to side 10° Front to front 10° Front to rear 

Test number 1 6 7 8 9 10 11 12 3 4 5 

±1° 0.906 1.193 1.172 0.39 0.598 0.63 0.351 0.173 0.565 0.37 0.376 

±5° 4.573 5.988 5.985 1.947 3.035 3.175 1.761 0.884 2.841 1.83 1.844 

±10° 9.527 12.437 12.548 3.867 5.903 6.415 3.515 1.771 5.541 3.564 3.687 

±15° 15.193 20.222 20.575 5.735 8.911 9.723 5.241 2.755 7.979 5.216 5.406 

±20° 23.325 30.842 30.928 7.599 11.652 13.16 6.992 3.682 10.208 6.761 7.095 

±25° 38.489 52.151 58.887 11.008 16.272 18.82 8.638 4.759 12.194 8.094 8.522 
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Table L.7: Effect of uncertainty in position of point of application δd on Δv1 and Δv2 (%) 

Collision Type 60° Front to side 90° Front to side 10° Front to front 10° Front to rear 

Test number 1 6 7 8 9 10 11 12 3 4 5 

±0.01 m 0.136 0.144 0.139 0.162 0.294 0.276 0.084 0.025 0.111 0.076 0.073 

±0.05 m 0.687 0.722 0.697 0.818 1.477 1.392 0.42 0.133 0.545 0.389 0.367 

±0.0762 m 1.063 1.1 1.076 1.249 2.253 2.114 0.647 0.21 0.841 0.59 0.566 

±0.10 m 1.363 1.445 1.41 1.64 2.952 2.791 0.86 0.289 1.106 0.775 0.738 

±0.20 m 2.718 2.869 2.789 3.26 5.808 5.405 1.751 0.756 2.231 1.585 1.508 

 

 

Table L.8: Effect of uncertainty in radii of gyration δk on Δv1 and Δv2 (%) 

Collision Type 60° Front to side 90° Front to side 10° Front to front 10° Front to rear 

Test number 1 6 7 8 9 10 11 12 3 4 5 

±0.01 m 0.083 0.078 0.077 0.095 0.204 0.174 0.016 0.001 0.033 0.019 0.018 

±0.05 m 0.412 0.391 0.39 0.482 1.035 0.866 0.08 0.005 0.168 0.092 0.09 

±0.10 m 0.826 0.785 0.779 0.958 2.091 1.756 0.16 0.011 0.335 0.185 0.183 

±0.20 m 1.693 1.603 1.613 1.961 4.23 3.554 0.335 0.023 0.695 0.383 0.387 
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Table L.9: Effect of uncertainty in A stiffness coefficient δA on Δv1 and Δv2 (%) 

Collision Type 60° Front to side 90° Front to side 10° Front to front 10° Front to rear 

Test number 1 6 7 8 9 10 11 12 3 4 5 

±5% 1.328 1.072 1.065 2.244 2.061 1.25 1.086 0.814 2.397 1.282 1.474 

±10% 2.647 2.137 2.113 4.451 4.14 2.509 2.202 1.606 4.829 2.587 2.945 

±15% 3.997 3.195 3.179 6.623 6.185 3.756 3.236 2.421 7.274 3.874 4.41 

±20% 5.325 4.309 4.233 8.867 8.271 5.008 4.411 3.256 9.887 5.231 5.936 

 

 

Table L.10: Effect of uncertainty in B stiffness coefficient δB on Δv1 and Δv2 (%) 

Collision Type 60° Front to side 90° Front to side 10° Front to front 10° Front to rear 

Test number 1 6 7 8 9 10 11 12 3 4 5 

±5% 0.726 1.384 1.315 0.881 0.34 0.635 0.715 0.993 0.659 0.651 0.85 

±10% 1.445 2.788 2.623 1.773 0.677 1.27 1.436 1.988 1.326 1.294 1.693 

±15% 2.168 4.164 3.917 2.648 1.046 1.898 2.139 2.961 2.007 1.931 2.574 

±20% 2.875 5.565 5.292 3.58 1.446 2.506 2.84 3.999 2.768 2.599 3.39 
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Appendix M: Comparison of energy adjustment factors using RICSAC test data 

This data is used in Chapter 7 section 7.6 where a new model to determine the pre-impact 

speeds of vehicles is described and validated using the data shown below.   

Table M.1: Pre-adjusted values and angles 

 
Unadjusted (J) Impact Angle 

Ψ (°) 

Angle α (°)  Angle β (°) 

Test Veh1 Veh2 Veh1 Veh2 Veh1 Veh2 

1 33877 27287 120 11.3 41.3 30.1 29.9 

2 46071 92096 120 11.7 41.7 30.1 29.9 

3 11842 15202 100 14.1 4.1 0.0 10.0 

4 39225 88067 100 11.1 1.1 0.0 10.0 

5 10049 94083 100 11.6 1.6 0.0 10.0 

6 14541 38550 120 11.0 41.1 30.0 29.9 

7 23600 49562 120 12.7 42.7 30.0 30.0 

8 26105 21200 90 19.0 19.0 45.1 44.9 

9 15321 7618 90 21.8 21.8 45.0 45.0 

10 34493 22242 90 25.3 25.3 45.1 44.9 

11 44616 61216 171 2.9 11.9 4.6 4.4 

12 155207 148443 171 1.0 8.0 2.5 4.5 

 

Table M.2: Standard energy adjustment factors 

 

Adjustment Factor 

21 tan ( )  
Adjusted Energy (J) 

Test Veh1 Veh2 Veh1 Veh2 

1 1.04 1.77 35229 48347 

2 1.04 1.79 48047 165203 

3 1.06 1.01 12589 15280 

4 1.04 1.00 40734 88100 

5 1.04 1.00 10473 94156 

6 1.04 1.76 15090 67880 

7 1.05 1.85 24799 91765 

8 1.12 1.12 29201 23714 

9 1.16 1.16 17772 8837 

10 1.22 1.22 42200 27212 

11 1.00 1.04 44730 63935 

12 1.00 1.02 155254 151375 

 



Appendices  Jon Neades 

227 

Table M.3: Calculated results using standard energy adjustment  

 
Closing Speed (m/s) Pre-Impact Speed (m/s) 

Test Normal Tangential Total Veh1 Veh2 

1 15.2 5.2 16.0 9.2 9.3 

2 24.3 8.1 25.6 14.8 14.8 

3 8.2 2.1 8.5 8.5 0.0 

4 17.3 3.4 17.6 17.6 0.0 

5 17.0 3.5 17.3 17.3 0.0 

6 16.3 5.6 17.3 10.0 10.0 

7 22.9 7.1 24.0 13.9 13.9 

8 11.4 5.6 12.6 8.9 9.0 

9 11.2 4.8 12.2 8.6 8.6 

10 17.5 6.3 18.6 13.1 13.2 

11 16.2 -2.1 16.3 8.0 8.4 

12 27.1 -1.7 27.1 13.6 13.7 

 

 

Table M.4: New energy adjustment factor 

The new energy adjustment factor is described in Chapter 4. Note that restitution (ep = 0.3) was 

applied to tests 8,9 and 10.  Adjusted restitution values were calculated using equations (4.30) 

and (4.28) 

 

Adjusted 

restitution 

Adjustment Factor 

t n1 tan( ) tan( )(1 ) / (1 )e e     
Adjusted Energy (J) 

Test en et Veh1 Veh2 Veh1 Veh2 

1 0 0 1.116 1.506 37795 41089 

2 0 0 1.120 1.513 51592 139366 

3 0 0 1.0 1.013 11842 15394 

4 0 0 1.0 1.003 39225 88368 

5 0 0 1.000 1.005 10049 94545 

6 0 0 1.112 1.502 16172 57886 

7 0 0 1.130 1.533 26670 75983 

8 0.3605 0.1237 1.474 1.470 38480 31159 

9 0.3621 0.1448 1.536 1.536 23537 11702 

10 0.3615 0.1703 1.616 1.612 55742 35861 

11 0 0 1.004 1.016 44798 62209 

12 0 0 1.001 1.011 155326 150079 
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Table M.5: Calculated results using new energy adjustment  

 
Closing Speed (m/s) Pre-Impact Speed (m/s) 

Test Normal Tangential Total Veh1 Veh2 

1 14.7 5.0 15.6 9.0 9.0 

2 23.0 7.6 24.2 14.0 14.0 

3 8.1 2.0 8.4 8.4 0.0 

4 17.2 3.4 17.6 17.6 0.0 

5 17.0 3.5 17.3 17.3 0.0 

6 15.5 5.3 16.3 9.4 9.4 

7 21.5 6.7 22.5 13.0 13.0 

8 13.0 6.4 14.5 10.2 10.3 

9 12.9 5.5 14.0 9.9 9.9 

10 20.1 7.2 21.3 15.1 15.1 

11 16.1 -2.1 16.2 8.0 8.3 

12 27.0 -1.7 27.1 13.5 13.6 
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